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ABSTRACT

The two broad approaches to discover properties of programs—

static and dynamic analyses—have complementary strengths: static

techniques perform exhaustive exploration and prove upper bounds

on program behaviors, while the dynamic analysis of test cases pro-

vides concrete evidence of these behaviors and promise low false

alarm rates. In this paper, we present DynaBoost, a system which

uses information obtained from test executions to prioritize the

alarms of a static analyzer. We instrument the program to dynami-

cally look for dataflow behaviors predicted by the static analyzer,

and use these results to bootstrap a probabilistic alarm ranking

system, where the user repeatedly inspects the alarm judged most

likely to be a real bug, and where the system re-ranks the remaining

alarms in response to user feedback. The combined system is able

to exploit information that cannot be easily provided by users, and

provides significant improvements in the human alarm inspection

burden: by 35% compared to the baseline ranking system, and by

89% compared to an unaided programmer triaging alarm reports.

CCS CONCEPTS

• Software and its engineering→ Automated static analysis;

Dynamic analysis; •Mathematics of computing→ Bayesian

networks; • Information systems → Probabilistic retrieval

models.
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1 INTRODUCTION

Both static and dynamic analysis techniques have established them-

selves as important and complementary approaches to determine
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facts about programs. On the one hand, static analyses provide ex-

haustive validation, but emit many false warnings, especially when

analyzing large pieces of code. On the other hand, dynamic analysis

tools have much higher precision—instrumentation frameworks

such as Valgrind [19], memory safety checkers such as AddressSani-

tizer [26] and MemorySanitizer [30], and datarace detectors such as

ThreadSanitizer [27] and RoadRunner [7] have found hundreds of

bugs and security vulnerabilities in large open source projects—but

routinely miss bugs because of the low coverage induced by test

suites. As such, while static analyses provide an upper bound on the

space of program behaviors, dynamic analysis provides concrete

evidence for their existence, thus establishing a lower bound. This

naturally raises the question: Can we use empirical data gathered

from witnessing program executions to improve the effective accuracy

of static analysis tools?

In a parallel thread, researchers have recently developed proba-

bilistic techniques to incorporate feedback from human users into

the output of static analyzers [9, 13, 24]. These approaches build on

the observation that analyzers reuse portions of their reasoning to

derive multiple alarms; as a result, an inaccurate function summary,

dataflow fact, or may-happen-in-parallel assertion can lead to mul-

tiple false warnings. The idea then is to recover these reasoning

traces, and use them to construct a Bayesian network that captures

correlations between the ground truths of each of the alarms. The

user then repeatedly inspects alarms and indicates whether or not

they represent real bugs. In response, the analyzer computes the

conditional probabilities of the remaining alarms in light of this

new information, and reprioritizes them in decreasing order of con-

fidence. As a result, these systems are able to rapidly deprioritize

false warnings, and uncover the real bugs in the program.

Despite its experimental success, Bingo [9, 24], which forms

our conceptual starting point, suffers from a few important limita-

tions: first, a purely static initialization of the Bayesian network has

limited information, and requires more human guidance. This is

evident in cases of false generalization: since the abstraction neces-

sarily over-approximates program behaviors, a probabilistic model

derived from the abstract behavior of the program sometimes causes

negative feedback given by the user to erroneously propagate to

the true bugs, thereby suppressing them. Furthermore, users are

typically only able to answer questions about the correctness of the

final warnings, and not about intermediate assertions and dataflow

facts derived by the analysis, and finally, erroneous human feed-

back has the potential to greatly degrade the quality of ranking in

subsequent iterations.

The central insight of our paper is that such interactive alarm

ranking systems can incorporate feedback not just from human

users, but also from diverse sources of knowledge, including by

dynamic instrumentation of test cases. We begin with the warnings

1154

https://www.acm.org/publications/policies/artifact-review-and-badging-current


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Tianyi Chen, Kihong Heo, and Mukund Raghothaman

and dataflow facts emitted by the Sparrow static analyzer [20, 21],

which checks C programs for a range of memory safety errors, and

use these to selectively instrument the program for analysis by the

DFSan dynamic dataflow tracking framework [32]. We then run

the instrumented program on its test inputs, and collect empirical

evidence for each theoretically predicted dataflow fact. We use the

resulting information as a first round of feedback to the alarm prior-

itization system, thus greatly improving the quality of the ranking

even before human intervention. We present the architecture of

this system, which we call DynaBoost, in Figure 1.

We emphasize that, in non-pathological cases, where test inputs

do not themselves expose erroneous program behaviors, the feed-

back provided by DFSan is limited to intermediate dataflow facts

rather than the final alarms raised by the static analysis. In this

situation, providing feedback from dynamic analysis corresponds

to providing evidence for internal nodes in the Bayesian network:

the conditional independencies [22] thus created are responsible

for limiting the impact of false generalization. Conversely, because

of the incompleteness of static analysis, the presence of an abstract

dataflow path from a tainted source to a sensitive sink does not, by

itself, imply the possibility of tainted data causing program errors:

as a result, transferring feedback from DFSan to the probabilis-

tic ranking subsystem requires some care while engineering the

Bayesian network.

We implemented these ideas using Bingo [9, 24], Sparrow [20, 21],

and DFSan [32] as building blocks. We evaluated our algorithms

on a suite of 13 Unix command line programs, ranging in size

from 9 KLOC to 112 KLOC, and which contain a set of known

historical bugs. On average, across all these benchmarks, Sparrow

emits 566 warnings per program. Using our system, DynaBoost,

a programmer is able to discover all these bugs after triaging just

59.5 warnings, on average per program. Notably, this is an 89%

reduction compared to an unaided user, and a 35% improvement

over Bingo, which requires 92.2 rounds of feedback, on average.

Much of this ranking improvement is due to a dramatic reduction in

the frequency and severity of false generalization events compared

to Bingo (see Figure 6): on average, DynaBoost has 79% fewer false

generalization events, each of which is itself only 11% of the size of

the average event occurring within Bingo.

Contributions. To summarize, we make the following contribu-

tions in this paper:

(1) We develop a Bayesian framework, DynaBoost, to combine in-

formation extracted from static and dynamic program analysis.

(2) We implement a system to perform targeted dynamic instru-

mentation based on the results of an over-approximate static

analysis.

(3) We present an experimental evaluation across a suite of Unix

utilities, and demonstrate an average drop of 35% in human

alarm annotation effort.

2 MOTIVATING EXAMPLE

In this section, we provide an overview of our approach by consid-

ering an example bug from the Linux command line program sort.

We will discuss how DynaBoost coordinates the static analyzer,

Sparrow, the dynamic analyzer, DFSan, and the Bayesian alarm

prioritization process to accelerate bug discovery.

2.1 Postmortem of a Coreutils Bug

In Figure 2, we show a snippet of code adapted from Version 7.2 of

the GNU coreutils program sort which contains a buffer overrun

bug [4]. The program has a feature to merge a set of previously

sorted files, and this functionality is implemented in the merge

function shown in the figure. This function in turn calls another

function named avoid_trashing_input to account for cases where

one of the input files is reused as an output file.

The avoid_trashing_input function iterates over the input files,

and checks whether they are the same as the output file. If so, then it

attempts to merge the remaining files into a new temporary file on

line 34. It might be unable to complete this merge due to the limited

availability of file handles from the operating system, so it packs

the files array by moving the remaining unmerged files on line 38.

Unfortunately, instead of moving nfiles - (i + num_merged) files,

the third argument requests that num_merged files bemoved, possibly

resulting in an out-of-bounds memory access.

To statically find this bug, we use the Sparrow program an-

alyzer [21]. It uses a def-use graph computed using the sparse

analysis framework [20] to determine all data dependencies leading

up to sensitive memory accesses, and subsequently performs an

interval analysis to prove memory safety. As one would expect, it

is unable to prove the safety of the call to memmove on line 38, and

raises an alarm at this line.

Notably, however, the underlying interval analysis is non-rela-

tional, and since the files array is dynamically allocated, it is also

unable to show that the accesses to files[i] on lines 36 and 37

are safe. It therefore raises two additional alarms at these lines. Of

course, these are both false warnings, and are a result of an overly

coarse abstraction. However, this abstraction was deliberately cho-

sen to allow the analysis to scale to large real-world programs, and

is an example of the accuracy-scalability trade-offs routinely made

by analysis designers. Overall, the sort program has 98 KLOC, and

Sparrow emits 715 warnings, including the bug on line 38.

2.2 Interactive Alarm Prioritization

We will now explain the interactive alarm prioritization process

used by Bingo [9, 24] that leverages a probabilistic model to general-

ize from user feedback to suppress likely false alarms and prioritize

likely true bugs.

Reconstructing the derivation graph. The first step is to recon-

struct the reasoning trace that causes Sparrow to report each alarm.

This reasoning process—interval analysis applied to the def-use

graph—can be approximately described by the derivation rules

shown in Figure 3. Starting from variable definitions and one-step

dataflow edges in the program, indicated by tuples of the form

VarDefn(𝑎) and DUEdge(𝑎,𝑏) respectively, the analyzer computes

dataflow paths of the form DUPath(𝑎,𝑏). If the final node 𝑏 in each

derived DUPath(𝑎,𝑏) corresponds to an array access, the analyzer

performs additional reasoning to prove the safety of the operation

at program point 𝑏. Note that we have not modeled the details

of this sub-analysis—which employs an interval abstraction—and

instead provide input tuples of the form Overflow(𝑏) as stubs for

unmodeled parts of the reasoning process. When the analyzer finds

such a dataflow path leading up to a potentially unsafe memory
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Test suite

Static Analyzer

Instrumentation

Harness

SDTransfer

Source

code
#include <stdlib.
int main() {
  int *x = malloc
  int *y = x;
  *x = 3;
  *y = 2;
  assert(*x == 2)
}

Bayesian

network

DSTransfer

Marginal

Inference

User
✔ ⋯
✔ ⋯
✗ ⋯

Empirical

observations

✔ ⋯
✔ ⋯
✗ ⋯

Feedback

1. ⋯
2. ⋯
3. ⋯

Ranked

alarms

DynaBoost

Figure 1: Architecture of the DynaBoost framework. Our main technical contributions include the construction of the

Bayesian network and the boxes marked SDTransfer and DSTransfer, corresponding to the transfer of instrumentation

targets from the static analyzer to the instrumentation harness, and the transfer of empirical evidence from the dynamic

analysis to the probabilistic model respectively.

1 static unsigned int nmerge = 16;

2 struct sortfile {

3 char const *name;

4 pid_t pid;

5 };

6 void merge(struct sortfile *files, size_t nfiles, char const *output_file)

7 {

8 size_t in, out;

9 for (out = in = 0; nmerge <= nfiles - in; out++) {

10 dfsan_set_label("src9", &out, sizeof(size_t));

11 struct sortfile temp;

12 create_temp(&temp);

13 size_t num_merged = mergefiles(&files[in], nmerge, &temp);

14 in += num_merged;

15 files[out].name = temp.name;

16 files[out].pid = temp.pid;

17 }

18 memmove(&files[out], &files[in], (nfiles - in) * sizeof(*files));

19 nfiles -= in - out;

20 nfiles = avoid_trashing_input(files, nfiles, output_file);

21 · · ·

22 }

23 size_t avoid_trashing_input(struct sortfile *files, size_t nfiles, char const *outfile)

24 {

25 print(dfsan_get_label(nfiles));

26 for (size_t i = 0; i < nfiles; i++) {

27 bool same = · · · ;

28 if (same) {

29 size_t num_merged = 0;

30 while (i + num_merged < nfiles) {

31 print(dfsan_get_label(i));

32 struct sortfile temp;

33 create_temp(&temp);

34 num_merged += mergefiles(&files[i], nfiles - i, &temp);

35 print(dfsan_get_label(num_merged));

36 files[i].name = temp.name;

37 files[i].pid = temp.pid;

38 memmove(&files[i + 1], &files[i + num_merged], num_merged * sizeof(*files));

39 nfiles -= num_merged - 1;

40 }

41 }

42 }

43 return nfiles;

44 }

Figure 2: Code fragment adapted from the sort program. The lines highlighted in red correspond to the alarms raised by the

Sparrow static analyzer, while the lines highlighted in green correspond to the instrumentation added by DynaBoost.

access, it reports an alarm at the appropriate point, as indicated by

the derivation rule 𝑟3.

In the case of our example, the assignment to the variable out

on line 9 may influence the value of nfiles at line 19 and through

the call to avoid_trashing_input, affect the values of variables i

and num_merged at lines 30 and 34 respectively. The program subse-

quently accesses the i-th and (i + num_merged)-th elements of the

files array at the locations of the alarms raised by Sparrow. We

may visualize this reasoning trace as the derivation graph shown

in Figure 4.

A probabilistic model of alarms. Observe now that if the user

triages the alarm at line 36 and indicates that it is not a real bug,

then we may conclude that line 37 is also a false alarm. The priori-

tization algorithm infers such correlations between alarms using

the derivation graph in Figure 4.

As an example, consider the tuple DUPath(9, 38), which indi-

cates that data may flow from a source at location 9 to a variable

Input relations

VarDefn(𝑎) : Variable definition at program point 𝑎

Overflow(𝑏) : Possible buffer overflow at point 𝑏

DUEdge(𝑎,𝑏) : Direct dataflow edge between program points 𝑎 and 𝑏

Output relations

DUPath(𝑎,𝑏) : (Transitive) Dataflow path from program point 𝑎 to 𝑏

Alarm(𝑏) : Alarm indicating possible buffer overflow at 𝑏

Derivation rules

𝑟1 : DUPath(𝑎,𝑏) :− VarDefn(𝑎),DUEdge(𝑎,𝑏)

𝑟2 : DUPath(𝑎, 𝑐) :− DUPath(𝑎,𝑏),DUEdge(𝑏, 𝑐)

𝑟3 : Alarm(𝑏) :− DUPath(𝑎,𝑏),Overflow(𝑏)

Figure 3: Modeling the program analyzer using derivation

rules, represented here as a Datalog program.

at location 38. Because of inaccuracies in the construction of the

dataflow graph, there is a small, but non-zero probability that a
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DUPath(9, 25) DUEdge(25, 30)

𝑟2 (9, 25, 30)

DUPath(9, 30)

DUEdge(30, 37)DUEdge(30, 36) DUEdge(30, 38)

𝑟2 (9, 30, 36)

DUPath(9, 36)

𝑟2 (9, 30, 37)

DUPath(9, 37)

𝑟2 (9, 30, 38)

DUPath(9, 38)

Overflow(36)

𝑟3 (9, 36)

Alarm(36)

Overflow(37)

𝑟3 (9, 37)

Alarm(37)

Overflow(38)

𝑟3 (9, 38)

Alarm(38)

Figure 4: Derivation graph for the alarms in Figure 2. Each

clause node (e.g., 𝑟2 (9, 30, 38)) indicates the variable valuation

with which the corresponding rule in Figure 3 was fired.

given derived tuple of this form does not represent a viable dataflow

path in the program.

To model such inaccuracies, the alarm prioritization process in-

terprets the derivation graph as a Bayesian network, and associates

each of its clauses with a probability of “misfiring”,

Pr(¬𝑡 | 𝑡1 ∧ 𝑡2 ∧ · · · ∧ 𝑡𝑘 ),

where 𝑡 is the tuple produced by instantiating a rule 𝑟 with the ap-

propriate input tuples, 𝑡1, 𝑡2, . . . , 𝑡𝑘 . From this, one can compute the

probability of each alarm, Alarm(𝑐), being a real bug, Pr(Alarm(𝑐)),

and use these probabilities to order alarms for triaging, with high-

confidence alarms inspected before alarmswith low confidence. Fur-

thermore, the computation ofmarginal probabilities—Pr(Alarm(𝑐1) |

Alarm(𝑐2) ∧ ¬Alarm(𝑐3)), for example—provide a natural mecha-

nism by which to generalize from user feedback and suppress or

prioritize similar warnings from the static analyzer.

For simple networks, and for the sake of exposition, we may

compute these values by hand, as we demonstrate in Appendix A.

If we assume that the prior probability Pr(DUPath(9, 25)) = 0.9,

and that there is a 1% i.i.d probability of each rule misfiring, then it

follows that the prior probability of Alarm(37) is given by:

Pr(Alarm(37)) = 0.873. (1)

Generalizing from user feedback. If the user indicates that Alarm(36)

is a falsewarning, wewould be interested in the values of Pr(Alarm(37) |

¬Alarm(36)) and Pr(Alarm(38) | ¬Alarm(36)):

Pr(Alarm(37) | ¬Alarm(36)) = 0.137. (2)

Observe the dramatic drop in Pr(Alarm(37) | ¬Alarm(36)) com-

pared to the value of Pr(Alarm(37)), which occurs because of the

shared derivation graph between Alarm(36) and Alarm(37). As a

result, the user feedback causes us to suppress the second alarm,

and permit the accelerated discovery of bugs in other parts of the

codebase. Recall that Sparrow reports 715 alarms when it ana-

lyzes GNU sort; the user-in-the-loop interaction process we just

discussed causes the bug to be discovered after inspecting only

176 alarms. We graphically depict this interaction loop in the right-

most portion of the system diagram in Figure 1, and will review the

construction of the probabilistic model in Section 3.

Despite the significant empirical improvement provided by Bingo,

it suffers from several important limitations. In principle, the con-

ditional probabilities, Pr(Alarm(𝑐) | 𝑡), may be computed with

respect to any tuple 𝑡 produced by the analysis, and not just those

corresponding to alarms, 𝑡 = Alarm(𝑐 ′). In practice, however, be-

cause of the highly technical nature of the analysis, users are only

able to provide limited forms of feedback, and even then, are prone

to making mistakes. Second, an investigation of the interaction

process reveals numerous instances of false generalization, where

the rank of the real bug drops during a single iteration. See, for

example, the “spikes” in the plots of Figure 6, and the aggregate

statistics in Table 3. Finally, because the triage process is primarily

user-driven, it sometimes results in a lengthy interaction process in

which the user has to inspect a large number of false warnings be-

fore discovering real bugs in the program. These limitations provide

the background for our present paper.

2.3 Dynamic Instrumentation as an
Information Source

Our central insight. The central insight of our paper is that the

feedback provided to the alarm prioritization algorithm need not

only come from human users, but can be drawn more broadly from

any source of information about the program. In particular, we

demonstrate the possibility of using dynamic information obtained

from test executions as an information source.

The dynamic dataflow sanitizer DFSan. DFSan [32] provides two

functions to inject taint labels and inspect the taint values of vari-

ables at runtime: (a) dfsan_set_label(dfsan_label label, void

*addr, size_t size), which associates the sequence of memory

locations addr, addr + 1, addr + 2, . . . , addr + (size - 1) with the

taint value label, and (b) dfsan_get_label(long data), which re-

turns the taint label associated with the value data. The annotated

program is then instrumented by DFSan during compilation so as

to track these injected taint values as the program executes.

Dynamic instrumentation. For each dataflow path, DUPath(𝑎,𝑏),

reported by Sparrow, we use DFSan to monitor program execu-

tions for concrete evidence of a flow between the (𝑎,𝑏) source-sink

pair. We highlight a simplified version of the annotations applied to

the sort program in green in Figure 2. As an example, consider the

tuple DUPath(9, 25). We annotate the variable being assigned at

the source, out, with a distinguished taint value—here "src9"—with

the call to dfsan_set_label on line 10. We then retrieve the labels

of all predicted downstream sinks with calls to dfsan_get_label

on lines 25, 31, and 35, and check whether the source taint prop-

agates to each of the sink locations. We run this instrumented

program on all tests provided with GNU sort Version 7.2, look-

ing for experimental confirmation of the predicted source–sink

flows. This in turn enables us to provide early feedback to the

Bayesian ranking process, so that it now ranks alarms according

to Pr(Alarm(𝑐) | DUPath(𝑎,𝑏)), rather than merely by their prior

probabilities Pr(Alarm(𝑐)).

To motivate the value of this process, we will now discuss how

Bingo causes false generalization while analyzing sort. First, con-

sider the symmetry between Alarm(36), Alarm(37), and Alarm(38)

in Figure 4. From this with our previous calculation of the prior
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and posterior probabilities in Equations 1 and 2, we conclude that:

Pr(Alarm(38)) = 0.873, Pr(Alarm(38) | ¬Alarm(36)) = 0.137.

This drop in posterior probability causes the alarm to drop in the

ranking, compared to other warnings in the program, and, since this

represents a real bug, corresponds to a false generalization event.

Overall, over the course of the interaction process, Alarm(38) gets

deprioritized twice, corresponding to the user inspecting each of

the neighboring alarms, Alarm(36) and Alarm(37). Visually, these

correspond to the two prominent spikes in Figure 6f.

We will now describe how DynaBoost mitigates this problem

of false generalization. Observe that even though the functional-

ity implemented in avoid_trashing_input is not exercised by any

test input, the function is always called from merge, and the stan-

dard suite of test cases does attempt to merge files. As a result,

DFSan observes experimental evidence for DUPath(9, 25). The al-

gorithm then ranks alarms in terms of Pr(Alarm(𝑐) | 𝑑 ∧ 𝑒), where

𝑑 = DUPath(9, 25) is the dynamic feedback, and 𝑒 represents the

feedback provided by the user. In this case, the original probabilities

are given by:

Pr(Alarm(36) | 𝑑) = Pr(Alarm(37) | 𝑑)

= Pr(Alarm(38) | 𝑑) = 0.993 = 0.970, (3)

where, as before, the expression 0.993 arises because of the three

rule applications between the evidence and the query nodes. Af-

ter the first round of user feedback, the posterior probability of

Alarm(38) is given by Pr(Alarm(38) | 𝑑∧𝑒), where 𝑒 = ¬Alarm(36).

We sketch this calculation in Appendix A, from which we can con-

clude that: Pr(Alarm(38) | 𝑑 ∧ ¬Alarm(36)) = 0.650. Observe that

user feedback on the false alarm, Alarm(36), causes a much smaller

drop in confidence in Alarm(38), and a significantly smaller false

generalization event.

Experimental results. As such, DynaBoost addresses the previ-

ously outlined limitations in Bingo: First, dynamic feedback, pro-

vided to tuples of the form DUPath(𝑎,𝑏), represents program be-

haviors which users would find difficult to certify. Second, this

additional information constrains the ways in which the marginal

inference algorithm may propagate user feedback—for example, by

activating conditional independencies in the Bayesian network—

and this reduces the incidence of false generalization. For example,

compare the frequency and magnitude of spikes of DynaBoost

and Bingo in the plots of Figure 6: there are 79% fewer spikes, and

each spike is only 11% of the original size. As a consequence, dy-

namic feedback becomes a valuable auxiliary source of information,

and dramatically reduces the alarm inspection burden, by approxi-

mately 35% compared to Bingo, and approximately 89% compared

to an unaided user (See Table 2).

3 AN OVERVIEW OF BAYESIAN ALARM
PRIORITIZATION

We will now present a high-level description of the Bayesian alarm

prioritization framework. It conceptually works in three phases: by

extracting the derivation graph from the static analyzer, converting

this derivation graph into a Bayesian network, and finally engaging

in an interaction loop with the user, while repeatedly performing

marginal inference to rank alarms.

First, we model the static analysis as a Datalog program, such as

that shown in Figure 3. Most briefly, a Datalog program consists

of a set of universally quantified Horn clauses, which we call rules.

We may read the rules from right-to-left, while treating the “:−”

operator in the middle read as the implication operator, “ ⇐= ”. For

example, the rule 𝑟2 may be read as, “For all program points 𝑎, 𝑏, 𝑐 ,

if there is a dataflow from 𝑎 to 𝑏, DUPath(𝑎,𝑏) and a one-step flow

from 𝑏 to 𝑐 , DUEdge(𝑏, 𝑐), then, transitively, there is also a dataflow

from 𝑎 to 𝑐 , DUPath(𝑎, 𝑐).” We will refer to each input hypothesis

and output conclusion, of the form 𝑅(𝑐1, 𝑐2, . . . , 𝑐𝑛), as a tuple.

We then modify the static analyzer to provide explanations for

each of its alarms. These explanations take the form of a derivation

graph, such as that shown in Figure 4. The derivation graph 𝐺

is a (possibly cyclic) directed graph consisting of two types of

nodes, corresponding to the tuples and grounded clauses of the

least fixpoint of the Datalog program. Each clause node refers to

a specific instantiation of a rule, which takes several tuples as

hypotheses and produces a tuple as conclusion. In our diagrams,

we will indicate the tuples by boxed vertices, and leave the clause

nodes unboxed.

We remark that the derivation graph is a best-effort post hoc

explanation: Sparrow is itself written in unrestricted OCaml, and

there are portions of the analyzer—such as the interval analysis—

which are left unmodeled. It should be possible to extract similar

derivation graphs from other static analyzers. To obtain this deriva-

tion graph, we reused the modifications to Sparrow which were

originally employed in Drake, and which consists of approximately

500 lines of changes to a 15 KLOC codebase [9].

Next, we convert the derivation graph into a Bayesian network.

We associate each node of the graph with a conditional probability

distribution, which indicates the probability of the node being true

for each combination of truth values of its hypothesis nodes.

Consider a grounded clause 𝑔 = 𝑟 (𝑐1, 𝑐2, . . . , 𝑐𝑘 ) which applies

rule 𝑟 to produce the conclusion 𝑡 from hypotheses 𝑡1, 𝑡2, . . . , 𝑡𝑛 :

𝑡 ⇐=
𝑟 𝑡1 ∧ 𝑡2 ∧ · · · ∧ 𝑡𝑛 . The clause nodes may be thought of as

conjunctions, which fire only when all of its hypothesis nodes are

derivable. To model the approximations of the static analysis, we

allow for the possibility of clause nodes misfiring, with a small

rule-dependent misfiring probability, 1 − 𝑝𝑟 :

Pr(𝑟 (𝑐1, 𝑐2, . . . , 𝑐𝑘 ) | 𝑡1, . . . , 𝑡𝑛) =

(

1 − 𝑝𝑟 if 𝑡1 ∧ · · · ∧ 𝑡𝑛, and

0 otherwise.

(4)

So that the probabilities all add up to 1, we naturally have Pr(¬𝑔 |

𝑡1, . . . , 𝑡𝑛) = 1 − Pr(𝑔 | 𝑡1, . . . , 𝑡𝑛). While these firing probabili-

ties 𝑝𝑟 may be determined using techniques such as expectation

maximization, we follow Bingo and uniformly set them to 0.99.

Similarly, the tuple nodes of a derivation graph may be thought

of as disjunctions, which are derivable only when at least one of its

contributing clauses is able to fire. Consider a tuple 𝑡 which is the

result of several alternative clauses: 𝑔1, 𝑔2, . . . , 𝑔𝑘 . We model 𝑡 as a

deterministic disjunction:

Pr(𝑡 | 𝑔1, . . . ,𝑔𝑘 ) =

(

1 if 𝑔1 ∨ · · · ∨ 𝑔𝑛, and

0 otherwise.
(5)
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As before, to indicate exhaustiveness, Pr(¬𝑡 | 𝑔1, . . . ,𝑔𝑘 ) = 1−Pr(𝑡 |

𝑔1, . . . ,𝑔𝑘 ). For all input tuples 𝑡in, we define the prior probability

as 1: Pr(𝑡in) = 1.

One notable challenge in the construction of this probabilistic

model is that Bayesian networks are required, by definition, to be

acyclic, while the derivation graph may potentially have cycles. To

address this, Bingo applies a cycle elimination algorithm which

drops clauses so as to obtain an acyclic graph while still preserving

the derivations of all alarms. This results in an acyclic derivation

graph, which is then used to build the Bayesian network.

Given the Bayesian network, we use an off-the-shelf solver, lib-

DAI, to perform marginal inference and rank alarms for user in-

spection [15].

4 TARGETED INSTRUMENTATION AND
FEEDBACK TRANSFER

In this section, we explain the operation of the DynaBoost sys-

tem. We formally present the top-level procedure in Algorithm 1.

The main contributions of this paper are in the dynamic analysis

performed in Steps 3–6. We describe the core SDTransfer and

DSTransfer procedures in Algorithms 2 and 3 respectively.

Algorithm 1DynaBoost(A, 𝑃,T), whereA is the static analysis,

𝑃 is the program, T is the set of available test cases.

(1) Let 𝑆 = A(𝑃). Statically analyze the program. The result 𝑆

consists of the set of alarms, the intermediate conclusions,

and the derivation graph connecting them.

(2) Construct the Bayesian network 𝐵 = MakeBNet(𝑃, 𝑆).

(3) Let 𝑃 ′ = SDTransfer(𝑃, 𝑆). Instrument the program using

the static analysis output.

(4) Compute 𝐷 = 𝑃 ′(T ). Run the instrumented program on the

test inputs.

(5) Let 𝐹𝐷𝑦𝑛 = DSTransfer(𝐷, 𝑆). Determine which dataflow

facts can be dynamically observed.

(6) Initialize the feedback, 𝐹 B 𝐹𝐷𝑦𝑛 . Assert 𝐹𝐷𝑦𝑛 ⊆ Tuples(𝑆).

(7) Initialize the set of unlabelled alarms, 𝐴𝑢 B Alarms(𝑆).

(8) While 𝐴𝑢 ≠ ∅:

(i) Present the highest probability unlabelled alarm for user

inspection:

𝑎𝑡 = argmax
𝑎∈𝐴𝑢

Pr(𝑎 | 𝐹 ).

(ii) If the user marks 𝑎𝑡 as true, update 𝐹 B 𝐹 ∧𝑎𝑡 . Otherwise

update 𝐹 B 𝐹 ∧ ¬𝑎𝑡 .

(iii) Update 𝐴𝑢 B 𝐴𝑢 \ {𝑎𝑡 }.

4.1 Performing Targeted Instrumentation

We will now describe SDTransfer, the process of instrumenting

the program based on results from the static analyzer. We present

the overall algorithm in Algorithm 2.

As discussed in Section 2, in addition to the runtime instru-

mentation applied to the LLVM IR, DFSan provides two functions:

dfsan_set_label to insert taint values into memory locations, and

dfsan_get_label to retrieve the taint values associated with a value.

For each dataflow tuple DUPath(𝑎,𝑏) produced by the static ana-

lyzer, our goal is to insert the appropriate taint values into variables

being assigned at program location 𝑎 using dfsan_set_label, and

to retrieve the taint values from variables being used at program

location 𝑏 using dfsan_get_label.

The main challenge in this process is in translating program

locations from Sparrow’s representation to points in the program

source code. Since Sparrow works with an SSA-form of the pro-

gram, some program locations such as 𝜙-nodes cannot be mapped

back to locations in the original program. In such cases, we do not

instrument the resulting DUPath(𝑎,𝑏) tuple. Furthermore, opera-

tions may have side-effects (such as *p++ = 1), syntactic constructs

may be arbitrarily nested (such as x = y->b + c), and a single line

of code may have multiple assignments (this commonly arises in

for-loops) so that we are only able to perform a best-effort instru-

mentation of the source code, and omit tuples which cannot be

instrumented. Overall, in our experiments in Section 5, we have a

58% success rate in instrumenting 43465 target locations.

Algorithm 2 SDTransfer(𝑃, 𝑆). Given a program 𝑃 and statically

determined dataflow facts 𝑆 , produces a program 𝑃 ′ with runtime

instrumentation enabled.

(1) For each predicted dataflow tuple DUPath(𝑎,𝑏) ∈ 𝑆 , if 𝑎 and

𝑏 can both be mapped to source locations, add the instru-

mentation highlighted in green below:

x = ...; // Program point 𝑎

+ dfsan_set_label("src-a", &x, sizeof(x));

...

+ print(dfsan_get_label(y));

read(y); // Program point 𝑏

(2) Return the instrumented program 𝑃 ′.

4.2 Transferring Runtime Output to Static
Feedback

We run the instrumented program 𝑃 ′ on the provided test cases,

T , and collect the list of all dataflow paths which are empirically

observed. We then perform lightweight feedback enhancement to

recover information about uninstrumented dataflows to or from

empty nodes, and use the frequency of observation of each dataflow

path to provide weighted feedback to the marginal inference algo-

rithm. We outline this process in Algorithm 3.

By borrowing terminology from graph theory, we term a tuple

DUPath(𝑎, 𝑐) as an (𝑎,𝑏)-bridge if (a) both DUPath(𝑎,𝑏),DUPath(𝑎,

𝑐) ∈ 𝑆 , the predictions of the static analyzer, and (b) the clause

DUPath(𝑎,𝑏) ⇐=
𝑟2 DUPath(𝑎, 𝑐) ∧ DUEdge(𝑐,𝑏)

is the only way to derive DUPath(𝑎,𝑏), where the rule 𝑟2 is drawn

from Figure 3. Bridges provide indirect evidence of dataflows to

empty nodes 𝑐 , which cannot themselves be directly instrumented.

In these cases, we can use dynamic observations of DUPath(𝑎,𝑏)

to infer truth of the bridge DUPath(𝑎, 𝑐). In Step 1 of Algorithm 3,

we repeatedly perform this feedback enhancement.

Additionally, to account for the frequency of observations of

individual dataflows, we count the number of test cases #(𝑎,𝑏)
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which witness each dataflow DUPath(𝑎,𝑏), and compare it to the

total number of test inputs, 𝑛. This allows us to prioritize feedback

to commonly observed dataflow paths, and only provide weak

experimental feedback for less frequently observed dataflow paths.

Algorithm 3 DSTransfer(𝐷, 𝑆). Given the results of the static

analysis 𝑆 , and the list of empirically observed dataflow facts 𝐷 ,

computes the dynamic feedback 𝐹𝐷𝑦𝑛 .

(1) Perform feedback enhancement. For each tuple

DUPath(𝑎,𝑏) ∈ 𝐷 , if there is an (𝑎,𝑏)-bridge,

DUPath(𝑎, 𝑐) ∉ 𝐷 , then update:

𝐷 B 𝐷 ∪ {DUPath(𝑎, 𝑐)}.

Repeat until fixpoint.

(2) Construct the dynamic feedback 𝐹𝐷𝑦𝑛 .

(i) Initialize 𝐹𝐷𝑦𝑛 B ∅.

(ii) For each tuple DUPath(𝑎,𝑏) ∈ 𝐷 , let #(𝑎,𝑏) be the number

of test inputs which trigger DUPath(𝑎,𝑏), and let 𝑛 be the

total number of test inputs. Provide feedback to the (𝑎,𝑏)

dataflow by updating:

𝐹𝐷𝑦𝑛 B 𝐹𝐷𝑦𝑛 ∪ {DUPath(𝑎,𝑏) ↦→ #(𝑎,𝑏)/𝑛}. (6)

(3) Return 𝐹𝐷𝑦𝑛 .

4.3 Differentiating Unfiltered Dataflows

In the last step, we modify the derivation graph to differentiate

between filtered and unfiltered dataflows. Because DFSan only

provides an under-approximation of feasible behaviors, it does not

provide information about the operations applied to the data along

the (𝑎,𝑏) dataflow path. As a result, it is insufficient to conclude that

this path could form the basis of a buffer overflow. To describe the

limited information coming fromDFSan, we introduce a new output

relation TDUPath, which indicates the possibility of an unfiltered

dataflow from source 𝑎 to sink 𝑏. We use the base DUPath(𝑎,𝑏)

tuples to derive tuples of the form TDUPath(𝑎,𝑏), but only apply

the feedback in 𝐹𝐷𝑦𝑛 to the original DUPath tuples. We describe

these modified Datalog rules in Figure 5. As we demonstrate in

Table 2, modeling these correlations is crucial to the experimental

effectiveness of DynaBoost, as it reduces the average number of

iterations from 156 (for Bingo𝑎𝑙𝑙 ) to 60 (for DynaBoost𝑎𝑙𝑙 ).

5 EXPERIMENTAL EVALUATION

To evaluate the experimental effectiveness of DynaBoost, we focus

on the following research questions:

RQ1. Does DynaBoost effectively prioritize the real bugs, and

how does it compare to Bingo?

RQ2. Does DynaBoost reduce the frequency and magnitude of

false generalization events?

RQ3. How does the number of test cases affect the ranking quality?

RQ4. How is the modification for the network structure important

for utilizing the runtime feedback?

We begin this section by describing our experimental setting,

and we focus on each of the above questions in Sections 5.2–5.4.1

1We will make our benchmarks and implementation public upon paper acceptance.

Input relations: VarDefn(𝑎), Overflow(𝑏), DUEdge(𝑎,𝑏)

Output relations: DUPath(𝑎,𝑏), Alarm(𝑎,𝑏)

TDUPath(𝑎,𝑏): (Unfiltered) Dataflow path from program point 𝑎 to 𝑏

Derivation rules

𝑟1 : DUPath(𝑎,𝑏) :− VarDefn(𝑎),DUEdge(𝑎,𝑏)

𝑟2 : DUPath(𝑎, 𝑐) :− DUPath(𝑎,𝑏),DUEdge(𝑏, 𝑐)

𝑟 ′3 : Alarm(𝑏) :− TDUPath(𝑎,𝑏),Overflow(𝑏)

𝑟4 : TDUPath(𝑎,𝑏) :− DUPath(𝑎,𝑏),VarDefn(𝑎),DUEdge(𝑎,𝑏)

𝑟5 : TDUPath(𝑎, 𝑐) :− DUPath(𝑎, 𝑐),TDUPath(𝑎,𝑏),DUEdge(𝑏, 𝑐)

Figure 5: Modified derivation rules to capture unfiltered

dataflows. We reuse rules 𝑟1 and 𝑟2 from Figure 3, and re-

place rule 𝑟3 with 𝑟 ′3.

Table 1: Benchmark characteristics. Size and #Test report the

lines of code and the number of test cases.

Program Version Analysis Size(KLOC) Tests

bc 1.06 Interval 14 18

cflow 1.5 Interval 40 33

grep 2.19 Interval 68 1646

gzip 1.2.4a Interval 9 49

libtasn1 4.3 Interval 30 17

patch 2.7.1 Interval 51 189

readelf 2.24 Interval 65 2601

sed 4.3 Interval 83 522

sort 7.2 Interval 98 789

tar 1.28 Interval 112 699

optipng 0.5.3 Taint 61 176

latex2rtf 2.1.1 Taint 27 130

shntool 3.0.5 Taint 13 7

5.1 Experimental Setup

Choice of benchmarks. We ran DynaBoost on a suite of widely

used C programs shown in Table 1. All benchmarks are from pre-

vious work using Sparrow [8, 9] and recent CVE reports. We ex-

cluded benchmarks with less than 5 KLOC because the limited

number of alarms raised by Sparrow does not impose a significant

alarm inspection burden. We additionally excluded wget and urjtag

because of compatibility issues either with DFSan or with Clang.

We used the test inputs that come with the program, if available,

to collect dynamic information. Three benchmark programs did

not have a developer-provided test suite: gzip, shntool, and optipng.

For these programs, we collected sample audio and image files [5,

33] (shntool, optipng), and compressed files from the Canterbury

corpus [23] (gzip).

Dynamic instrumentation and ranking process. We use Dataflow-

Sanitizer (DFSan) [32] to collect the runtime dataflow information.

For each source–sink pair, DUPath(𝑎,𝑏) reported by Sparrow, we

determine the variables assigned at program location 𝑎 and inject a

runtime taint label using the dfsan_set_label() function, and we

retrieve the taint labels of all variables accessed at program location

𝑏 using the dfsan_get_label() function. We break ties between
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identically ranked alarms by using their confidence values from

the purely static ranking process in Bingo.

Baselines. We instantiate DynaBoost with two different set-

tings: DynaBoost𝑎𝑙𝑙 that is based on the augmented network struc-

ture of Section 4.3 and initialized with dynamic feedback, and

DynaBoost𝑧𝑒𝑟𝑜 which also uses the new network structure, but

withholds dynamic feedback.We similarly instantiate two baselines:

Bingo𝑎𝑙𝑙 which uses the original network structure [24] but also

includes dynamic feedback, and Bingo𝑧𝑒𝑟𝑜 which neither uses the

new network structure nor uses dynamic feedback [24].

Runtime performance of DynaBoost. Sparrow requires an aver-

age of 206 seconds to analyze the benchmark programs. This ranges

from a few seconds for gzip to 840 seconds for tar. Instrumentation

and dynamic data collection requires a comparable amount of time,

ranging from a few seconds to about 20 minutes. Note that this is

the time for all test inputs, run in sequence, and can be parallelized

in a straightforward manner. Finally, the initial ranking and repri-

oritization processes are much faster, and Step 8(i) of Algorithm 1

takes 14 seconds, on average.

5.2 RQ1: Effectiveness of Ranking

We first evaluate the effectiveness of DynaBoost𝑎𝑙𝑙 compared to

Bingo𝑧𝑒𝑟𝑜 . Notice that DynaBoost𝑎𝑙𝑙 is different from Bingo𝑧𝑒𝑟𝑜
in two ways: feedback from dynamic analysis and augmented

Bayesian network structure. These aspects will be further dis-

cussed in the subsequent sections. In this section, we measure

the initial rankings of all bugs and the number of iterations un-

til DynaBoost𝑎𝑙𝑙 and Bingo𝑧𝑒𝑟𝑜 find all the bugs. The results are

shown in Table 2.

We observe that DynaBoost𝑎𝑙𝑙 is significantly more effective at

prioritizing true bugs compared to Bingo𝑧𝑒𝑟𝑜 . On average, the full

system, DynaBoost𝑎𝑙𝑙 finds the bug within 59.5 iterations while

Bingo𝑧𝑒𝑟𝑜 requires 92.2 iterations, resulting in a 35% reduction in

the human alarm inspection burden. One of the main reasons of this

effectiveness is the improvement of the quality of initial rankings

(i.e., right after transferring feedback from DFSan). Before any user

feedback, DynaBoost𝑎𝑙𝑙 places the true bugs at rank 160 while

Bingo𝑧𝑒𝑟𝑜 yields 251, on average. This statistic also would be of in-

terest in cases where users do not wish to interact with the tool, but

merely want a listing of alarms above a certain threshold for offline

inspection. Another reason is the reduction of false generalization

which will be discussed more in the next section.

We notice particularly dramatic improvements in the cases of

cflow and tar. Both of the benchmarks show the improved quality

of the initial rankings (from 517 to 173 for cflow, from 697 to 253 for

tar), thereby producing the reduced number of iterations needed

to find all the bugs (78% and 58% improvements for cflow and tar

respectively). Interestingly, while both of these benchmarks already

had test cases that exercise the data flow paths in question, they did

not capture the bugs because they could only be triggered by care-

fully chosen test inputs. As a result, the only remaining uncertainty

in the ground truth of the alarm arises from incompleteness in the

interval analysis performed by Sparrow. Therefore, DynaBoost𝑎𝑙𝑙
quickly prioritizes these alarms over the rest.

Finally, we notice small performance regressions on some bench-

marks. For the buffer overflow benchmarks such as readelf, these

were caused by a biased test suite which fails to exercise any of the

dataflow facts that are involved in the derivation of the bugs. In

the case of shntool, we speculate that the regression is the result

of fluctuations caused by the small number of alarms emitted by

Sparrow(23) combined with the large number of true alarms (6),

which together amplifies the effect of noise in the ranking process.

In any case, we note that for all these benchmarks, the absolute

value of the performance regression is small (≤ 13 iterations), and

the overall ranking process still provides massive reductions in the

human alarm inspection burden.

5.3 RQ2: Reduction of False Generalization

Next, we measure the impact of dynamic feedback in reducing

false generalization. After each round of feedback, we measure the

average rank of all real bugs, and compare this average to their

average rank in the previous round. We define a false generalization

event as one in which this average drops by 10% or more and by

at least 5 alarms. The rank reported in Table 3 is the sum of this

average rank drop across all false generalization events, and shows

how DynaBoost𝑎𝑙𝑙 mitigates the false generalization problem.

In case of sort, DynaBoost𝑎𝑙𝑙 reduces the number of required

user iterations by 39.7%. According to the results, the average num-

ber of rank drop events of true alarms is reduced from 4.5 to 0.9. The

average rank drop size for each time is also dropped from 214.8 to

23.1. While Bingo𝑧𝑒𝑟𝑜 introduces two major false generalizations

around iteration 100 and 130, DynaBoost𝑎𝑙𝑙 substantially reduces

their impact on the two same false alarms around iteration 75. As

shown in Figure 4, the derivation rules of all these alarms share the

tuple observed at runtime, DUPath(9, 25). Thus, for DynaBoost𝑎𝑙𝑙 ,

when rejecting the two false alarms, we do not decrease the associ-

ated probabilities blindly, instead, we limit the extent of feedback

propagation because of the confidence brought by the observation.

5.4 RQ3: Impact of Test Cases on Ranking
Performance

In this section, we conduct a sensitivity studywith different amounts

of test data. Since DynaBoost leverages dynamic analysis results,

the quality of ranking relies on the number and coverage of test

cases. To quantify this relationship, we ran DynaBoost on the

benchmarks with different subsets of the entire test suite, and mea-

sured the number of iterations needed to discover all bugs in the

programs. We varied the fraction of test cases chosen, and repeated

the experiment for each fraction 10 times.

We plot these results in Figure 7. We additionally include the

number of iterations needed by Bingo𝑧𝑒𝑟𝑜 as a visual baseline (dot-

ted lines). Notice that the left-most observation of each benchmark,

corresponding to column DynaBoost𝑧𝑒𝑟𝑜 in Table 2, already cor-

responds to 72% reduction in alarm inspection burden compared to

an unaided user, averaged across all benchmarks. We observe that

for most of the benchmarks, even when only half of the total test

inputs are chosen, the number of iterations needed by DynaBoost

remains close to its effectiveness on the complete test suite. In fact,

for a majority of benchmarks, this is true even when we provide
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Table 2: Effectiveness of DynaBoost compared to Bingo. #Alarms shows the total number of alarms reported by Sparrow.

Init and Iters measure the average initial rank of the bugs and the number of iterations needed until finding all the bugs.

Program #Alarms Bugs DynaBoost𝑎𝑙𝑙 DynaBoost𝑧𝑒𝑟𝑜 Bingo𝑎𝑙𝑙 Bingo𝑧𝑒𝑟𝑜

Init Iters Init Iters Init Iters Init Iters

bc 535 2 121.0 48 327.0 113 84.0 100 358.0 96

cflow 805 1 173.0 21 356.0 105 163.0 163 517.0 94

grep 912 1 144.0 66 714.0 378 44.0 44 72.0 53

gzip 344 14 230.0 235 229.5 326 233.4 287 147.3 283

libtasn1 357 1 5.0 14 113.0 6 3.0 5 33.0 9

patch 502 1 58.0 14 227.0 33 27.0 27 136.0 36

readelf 882 1 300.0 88 111.0 36 460.0 443 181.0 78

sed 819 1 316.0 70 469.0 196 284.0 284 519.0 122

sort 715 1 461.0 106 479.0 174 458.0 446 555.0 176

tar 1369 1 253.0 91 602.0 220 162.0 162 697.0 218

optipng 67 1 3.0 4 5.5 4 11.0 41 7.0 6

latex2rtf 13 2 6.5 5 2.0 2 6.5 6 30.0 14

shntool 23 6 8.2 18 15.2 21 7.7 18 8.0 13

Average 564.8 2.5 159.9 60 280.8 124 149.5 156 250.8 92
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Figure 6: Ranking changes of true alarms by DynaBoost𝑎𝑙𝑙 and Bingo𝑧𝑒𝑟𝑜 . The remaining plots are available in Appendix B.

just 10% of all test inputs. Furthermore, the variation in number of

iterations quickly disappears as test cases are added.

One striking observation in Figure 7 is that for many benchmarks,

the number of iterations needed by DynaBoost is independent of

the size and choice of test inputs. We conjecture that many test

inputs exercise similar paths through the program, such as by en-

tering through main(), parsing command line arguments, or by

exercising common functionality, such as parsing regular expres-

sions in grep. Such inputs would result in many shared dataflows,

which are responsible for similar prioritization results. On the other

hand, some programs have a few distinct functionalities, such as tar

which can alternately compress or decompress a file, and sampling

test inputs leads to a bimodal performance distribution, as we can

see in Figure 7f.

We observe notably exceptional behavior for readelf as the num-

ber of iterations degrades with additional test cases. According to

our investigations, this is because no test case ever explores the

buggy function, process_cu_tu_index(). This function is respon-

sible for reading the contents of dwo files, which contain DWARF

objects related to debug information in the binary. We subsequently

chose an intermediate tuple in the derivation tree and manually

provided positive feedback, thus overriding data obtained from the

test cases. This reduced the number of iterations needed to find

the bug from 88 to 49. We conclude that the biased set of test cases

1162



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Tianyi Chen, Kihong Heo, and Mukund Raghothaman

Table 3: Magnitude and frequency of false generalization.

#Events indicates the number of false generalization events,

andRank↓ indicates the sumof the average rank drop across

all false generalization events.

Program DynaBoost𝑎𝑙𝑙 Bingo𝑧𝑒𝑟𝑜

Rank ↓ # Events Rank ↓ # Events

bc 32.5 2 661.0 6

cflow 0 0 421.0 7

grep 0 0 0 0

gzip 55.6 6 225.9 14

libtasn1 0 0 0 0

patch 0 0 72.0 3

readelf 33.0 1 43.0 3

sed 63.0 1 360.0 2

sort 116.0 2 459.0 4

tar 0 0 485.0 16

optipng 0 0 65.0 3

latex2rtf 0 0 0 0

shntool 0 0 0 0

Average 23.1 0.9 214.8 4.5

in readelf continuously prioritizes alarms in other functions and

suppresses the true bug.

5.5 RQ4: Impact of Network Structure on
Ranking Performance

Finally, we empirically clarify the impact of augmented network

structure described in Section 4.3. We compare the performance of

DynaBoost𝑎𝑙𝑙 compared to Bingo𝑎𝑙𝑙 that is based on the original

network with full feedback from dynamic execution.

The results are shown in Table 2. With the original network, the

number of required iterations by Bingo𝑎𝑙𝑙 is 2.6x higher than that

for DynaBoost𝑎𝑙𝑙 . For example, we observed significant regres-

sions for readelf, sed and sort with Bingo𝑎𝑙𝑙 .

Interestingly, the performance of Bingo𝑎𝑙𝑙 is even worse than

Bingo𝑧𝑒𝑟𝑜 . Even though dynamic feedback improves the quality of

the initial ranking by 40% in the original network, it appears that

the newly introduced conditional independencies by the feedback

heavily limit positive generalization of user feedback. For exam-

ple, Bingo𝑎𝑙𝑙 did not generalize any feedback for benchmarks (e.g.,

cflow , grep, patch, sed, and tar), but just enumerate alarms follow-

ing the initial rankings. This result shows that the new network

structure is more suitable for handling dynamic feedback.

6 LIMITATIONS AND THREATS TO VALIDITY

One significant restriction of our experimental evaluation is that we

have restricted our attention to a single static analyzer (Sparrow),

two analyses (buffer overflows and taint tracking), and a small set of

benchmark programs. However, our principal assumptions are that

the analysis permit recovery of the derivation graph (such as Fig-

ure 4), and that it permit experimental observation of intermediate

facts.

For example, def-use chains are a general building block for

a large class of static analysis tools based on the sparse analysis

framework [20], including TAJS [10], Pinpoint [28], and SVF [31].

Bug-finding tools based on these techniques can directly leverage

our work as described in the paper.

Furthermore, if the analysis is expressed in Datalog or using

similar deductive approaches—examples include Chord [16] and

Doop [2]—and if the abstract behaviors are experimentally observ-

able, then our techniques are again potentially applicable. As an

example, the datarace detector in Chord fundamentally depends on

a may-happen-in-parallel analysis, which can be experimentally

observed using dynamic datarace detectors such as RoadRunner [7].

Another threat to the validity of our experiments arises from

our protocol. We started with a set of historical bugs for each of the

programs, and assumed that only this explicitly identified target

bug was real, and that all other warnings produced by the static

analyzer were false positives. We simulated user interaction by re-

peatedly examining the alarm with highest conditional probability,

and labelling it as true or false.

In any case, note that we provide identical labels to both Dyn-

aBoost and Bingo. Furthermore, mislabelling can affect alarms

in only one direction, i.e., by mistakenly identifying real bugs as

false warnings. As a result, when considering such potential mis-

labellings, the numbers in Table 2 provide an upper bound on the

time needed to discover the first real bug using DynaBoost.

7 RELATED WORK

Dynamic analysis. A large body of research on dynamic analysis

has been proposed to capture interesting properties of programs

such as memory safety [19, 26, 30], datarace [7, 27], likely invari-

ant [6]. While DynaBoost currently relies on DFSan because our

underlying analyzer is based on data dependencies, we conjecture

that other combinations of static and dynamic analyzers would be

possible. For example, runtime information of two threads that may

happen in parallel by RoadRunner [7] can be transferred to the

alarm ranking system for static datarace detection [24].

Combining static and dynamic analysis. Researchers have previ-

ously investigated techniques to combine both approaches, such as

by inserting dynamic checks to validate properties which are not

statically provable [1, 12, 18, 29], using information collected from

test executions to optimally set knobs for a subsequent analysis

run [17], concolic execution to guide testing through pieces of code

that are difficult to explore [25], using static analysis to minimize

the amount of dynamic monitoring [3, 14], or bounded exhaustive

testing [34]. Our work is different from the previous work as we

combine the two approaches in a probabilistic framework for alarm

ranking system.

User-guided static analysis. Previous user-guided approaches for

static analysis such as alarm classification [13, 35], alarm ranking [9,

24] and alarm clustering [11] provide mechanisms to incorporate

user feedback to filter out false alarms. However, human user of

static analyzers, who is unaware of the details of analysis design,

can provide only limited forms of feedback such as labels of alarms.

DynaBoost overcomes this limitation by incorporating dynamic
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(a) grep-2.19 (b) patch-2.7.1 (c) readelf-2.24 (d) sed-4.3

(e) sort-7.2 (f) tar-1.28 (g) latex2rtf (h) optipng-0.5.3

Figure 7: Performance of DynaBoost with a limited number of test cases, sampled from the full test suite. The whisker plot

indicates the distribution of observed results. The remaining plots are available in Appendix B.

analysis results from test cases, thereby boosting the performance

of alarm ranking systems.

8 CONCLUSION

In this paper, we developed a probabilistic technique to leverage

the results of a dynamic analysis to increase the effective accuracy

of a static analyzer. By targeted instrumentation of the program, we

were to able to experimentally confirm the presence of intermediate

conclusions drawn by the static analyzer, and use this feedback to

prioritize the generated alarms. In experiments, we demonstrated a

significant reduction in the human alarm inspection burden, and

improvements in other related metrics such as the quality of the

initial ranking, and false generalization events. We anticipate po-

tential applications of this research in synthesizing test cases, and

in automatic fault localization.
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