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Abstract
Large Foundation Models (LFMs) have unlocked new possi-
bilities in human-computer interaction, particularly with the
rise of mobile Graphical User Interface (GUI) Agents capable
of interpreting GUIs. These agents promise to revolutionize
mobile computing by allowing users to automate complex
mobile tasks through simple natural language instructions.
However, the inherent probabilistic nature of LFMs, coupled
with the ambiguity and context-dependence of mobile tasks,
makes LFM-based automation unreliable and prone to er-
rors. To address this critical challenge, we introduce VeriSafe
Agent (VSA): a formal verification system that serves as a
logically grounded safeguard for Mobile GUI Agents. VSA is
designed to deterministically ensure that an agent’s actions
strictly align with user intent before conducting an action.
At its core, VSA introduces a novel autoformalization tech-
nique that translates natural language user instructions into
a formally verifiable specification, expressed in our domain-
specific language (DSL). This enables runtime, rule-based
verification, allowing VSA to detect and prevent erroneous
actions executing an action, either by providing corrective
feedback or halting unsafe behavior. To the best of our knowl-
edge, VSA is the first attempt to bring the rigor of formal ver-
ification to GUI agent, effectively bridging the gap between
LFM-driven automation and formal software verification. We
implement VSA using off-the-shelf LLM services (GPT-4o)
and evaluate its performance on 300 user instructions across
18 widely used mobile apps. The results demonstrate that

∗Co-first authors : Jungjae Lee, Dongjae Lee
†Co-corresponding authors : Sunjae Lee, Insik Shin

VSA achieves 94.3%–98.33% accuracy in verifying agent ac-
tions, representing a significant 20.4%–25.6% improvement
over existing LLM-based verification methods, and conse-
quently increases the GUI agent’s task completion rate by
90%–130%.

1 Introduction
The advent of Large Foundation Models (LFMs) [1–3] has
revolutionized human-computer interaction, paving the way
for a new generation of agents capable of interacting with
graphical user interfaces (GUIs) [4–13]. Among these, Mobile
GUI Agents stand out for their ability to automate complex
tasks within mobile applications, reducing manual effort and
enhancing user convenience. By leveraging the reasoning
and natural language understanding capabilities of LFMs,
these agents can interpret user requests and translate them
into sequences of UI interactions [4, 6–8].
However, despite significant advancements, existing Mo-

bile GUI Agents still face fundamental limitations that hin-
der their reliability and safety in real-world applications.
One major challenge stems from the probabilistic nature
of LFMs, which can lead to unpredictable and erroneous
actions. Additionally, mobile app interactions are often am-
biguous and context-dependent, making it difficult even for
state-of-the-art LFMs to generate consistently accurate ac-
tions [12, 14, 15]. These challenges are especially critical
for tasks involving sensitive operations, such as financial
transactions or private communications, where errors can
have serious or irreversible consequences. Therefore, imple-
menting robust safeguards and verification mechanisms is
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essential to ensuring the safe and reliable deployment of
Mobile GUI Agents.

Recent approaches [8, 16] have attempted tomitigate these
challenges by introducing reflection agents that use LFMs
to review the actions of the primary GUI agent and pro-
vide feedback. However, these approaches come with signifi-
cant drawbacks. Since reflection agents also rely heavily on
LFMs, they remain susceptible to the same errors, leading
to a compounding of inaccuracies. Furthermore, repeated
LFM queries for reflection incur substantial computational
costs and latency, further limiting their practicality. These
limitations highlight three key challenges inherent in relying
solely on LFMs for verification:
1) Existence of Irreversible and Risky Action: One way to

improve verification accuracy is to analyze both the action
and its resulting screen state. While the app screen after
the action (post-action verification) provides useful context
for verification, many critical mobile actions (e.g., making a
payment, sending a message) are irreversible. In such cases,
verification becomes meaningless, as the agent cannot filter
or "undo" the erroneous actions. This fundamentally defeats
the core purpose of verification, which prevents critical er-
rors before they occur. To ensure genuine safeguard against
critical errors, verification must be performed before execut-
ing the action (pre-action).
2) The Forward Assessment Problem: To Verify an agent’s

action before its execution, it requires a forward-looking as-
sessment: predicting the effect of the proposed action before
execution. However, this process can be as difficult – if not
more difficult – than generating the action itself. Further-
more, the predicted outcome aligns with the user’s overall
goal adds another layer of complexity. Consequently, this
approach is akin to solving a simpler problem with a more
complex one, potentially turning verification into a perfor-
mance bottleneck.
3) Compounding Error Probability: Mobile tasks typically

comprise a sequence of actions, each requiring verification.
Continuously relying on LFMs for validation at every step
increases the likelihood of accumulated errors, which can
ultimately degrade overall system accuracy, despite efforts
to improve it.

To overcome these challenges, we introduceVeriSafe Agent
(VSA), a deterministic, logic-based verification system for
Mobile GUI Agents. To the best of our knowledge, this is
the first attempt to provide a reliable pre-action verification
mechanism grounded in logic-based reasoning rather than
existing probabilistic methods, bridging the gap between
probabilistic actions and deterministic safety. Specifically,
VSA leverages the concept of autoformalization [17], which
automatically translates natural language user instructions
into a formal specification. Using the translated specification,

VSA performs runtime verification to ensure the correctness
of the agent’s actions in runtime.
However, unlike conventional software verification [18–

21], which operates on predefined safety requirements, VSA
faces the unique challenge of formalizing impromptu, user-
defined instructions on-the-fly, across diverse and dynamic
landscape of mobile applications. To accomplish this, VSA
introduces three key innovations:

(1) Domain-Specific Language (DSL) and Developer Library:
A specialized language and accompanying tools tai-
lored to dynamic nature of mobile environments. Col-
lectively, they can encode both the natural-language
user instructions and corresponding UI actions as log-
ical formulas.

(2) Intent Encoder and Verification Engine: A system that
systematically translates user instructions into logi-
cal constraints (expressed as our DSL) and performs
runtime, deterministic verification against these con-
straints.

(3) Structured Feedback Generation: A proactive mecha-
nism that provides actionable feedback to the GUI
agent, before executing an action, identifying specific
logical violations and unmet conditions to guide the
agent toward correct task completion.

We implement a prototype of VSA using off-the-shelf on-
line LLM service (GPT-4o) and integrate it with M3A (Mul-
timodal Autonomous Agent for Android) GUI agent [12].
Our evaluation, conducted on 300 user instructions across
18 widely used mobile applications demonstrates that with
an estimated 10 additional lines of code (LoC) per app, VSA
successfully verifies GUI agent actions with up to 98.33%
accuracy, achieving a false positive rate of 2.7% and a false
negative rate of 0.7%. This significantly outperforms baseline
reflection agents by 25.6%. Furthermore, VSA’s structured
feedback, derived from logical verification results, enables
the GUI agent to enhance its task completion rate by 130%,
a substantial improvement compared to reflection agents,
which failed to correct any tasks.

2 Background and Motivation
Graphical User Interface (GUI) Agents. GUI Agents [4–
10] are software programs designed to interact autonomously
with applications through graphical user interfaces. By inter-
preting visual and semantic information presented in GUIs
and simulating human interactions (e.g., clicks, swipes, and
text entry), GUI agents enable automation of digital tasks
without requiring internal access to application code or APIs.
Recent advancements in artificial intelligence, particularly
driven by Large Foundation Models (LFMs), have signifi-
cantly enhanced the capabilities of GUI agents, enabling
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𝑝 ∧ 𝑞 → 𝑟

(a) Traditional Mobile GUI Agent System (b) Mobile GUI Agent System with VeriSafe Agent integration

Figure 1: Comparison of (a) a traditional GUI agent system and (b) VSA integrated system.

them to understand complex user instructions and inter-
pret sophisticated mobile application GUIs. However, due
to the inherently probabilistic nature of LFMs and often
ambiguous and under-specified nature of GUI interactions,
contemporary GUI agents are susceptible to incorrect ac-
tions [14, 15, 22–26], necessitating robust verification mech-
anisms to ensure reliability and safety in practical scenarios.
Safeguarding GUI Agents using Reflection. The cur-

rent practice for safeguarding GUI agents often involves
the use of reflection agents, which utilize LFMs to review
the actions generated by the primary GUI agent. Reflection-
based approach can be broadly classified into two categories:
pre-action verification and post-action verification.

Pre-action reflection [16] evaluates a proposed action before
it is executed on the mobile app. This approach serves as
an effective guardrail by providing an opportunity to abort
or correct erroneous actions before they occur. However, it
frequently suffers from low verification accuracy because it
requires predicting the outcome of an action. Such inaccura-
cies lead to high false negatives and positives, paradoxically
decreasing the overall system accuracy and undermining the
intended safety benefits.
Conversely, post-action reflection [8] evaluates an action

after its execution, leveraging the resulting application state
to concretely assess the correctness of the action. While this
approach significantly improves verification accuracy, it has
a critical limitation: it cannot prevent irreversible actions. For
irreversible actions such as financial transactions or sending
messages, post-action verification becomes ineffective, as
such actions cannot be undone once they are performed.
VSA is designed to address these limitations, providing a

reliable pre-action verification that is based on a logic-based
deduction instead of probabilistic reasoning.

SoftwareVerification for Safety-Critical Systems. Soft-
ware verification [27–36] encompasses a range of methodolo-
gies to ensure that software systems behave correctly accord-
ing to specification. These formal verification techniques
have been widely adopted to provide strong correctness
guarantees in safety-critical domains, including hardware
design [31], automotive systems [32], and cyber-physical sys-
tems [33, 34]. Among them, dynamic verification [35] aims
to check the properties of the program or detect incorrect be-
haviors when the program is executed. The formal definition
of malfunctions is written in mathematical expressions such
as first-order logic, linear temporal logic, and finite-state au-
tomaton. Once the verification properties are defined, verifi-
cation can be performed by checking whether an automaton
reaches an accept state or by converting the problem into a
satisfiability modulo theory (SMT) problem to find satisfying
variable assignments using SMT solvers [37]. In particular,
runtime verification is a type of dynamic verification that
monitors the execution of a program in runtime [36]. It de-
tects anomalous behavior through systematic observation
of program execution.

3 VeriSafe Agent (VSA): Overview
Inspired by the success of formal verification in other do-
mains, this work adapts techniques from software verifica-
tion to solve the specific challenges of Mobile GUI Agent
safety and reliability.

As illustrated in Figure 1, VSA is layered on top of an exist-
ing GUI agent, acting as a verification layer before the agent’s
proposed UI actions are injected into a mobile app. Given
a user instruction, VSA translates it into a logical formula
representing the conditions for successful task completion.
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Then, when the GUI agent generates a UI action, VSA verifies
whether this action satisfies the pre-defined logical formula.
If the action is verified as correct, it is passed on to the mobile
application. If the action fails verification, VSA provides feed-
back to the GUI agent, explaining the reason for the failure
and guiding the agent to generate a corrected action.

3.1 Challenges
In doing so, VSA addresses three key challenges:

C1. How to formally express the user’s intent and the app’s
execution flow in logically tractable representation?

C2. How to accurately translate natural language user in-
structions into a formal representation and perform
runtime verification against it?

C3. How to effectively communicate verification results
back to the GUI agent in an actionable, explainable
manner?

C1. Conventional software verification techniques typically
rely on precise, pre-defined formal specifications of program
behaviors. However, mobile GUI agents operate on natural
language instructions, which are inherently informal and am-
biguous. Therefore, we need a representation system that can
clearly express both the user’s intent and the corresponding
logical flow of the application to fulfill that intent. To ad-
dress this, VSA introduces a domain-specific language (DSL,
§ 4.1) and an associated developer library (§ 4.2). The DSL
provides the syntax and semantics for expressing user intent
as logical rules that must be satisfied. The developer library
enables app developers to explicitly define the app states
and transitions required to construct these rules. Together,
they allow VSA to represent both the desired behavior (user
intent) and the actual behavior (app execution) in a unified,
logically verifiable manner.

C2. Natural language is often vague, underspecified, and
prone to misinterpretation, making it difficult to accurately
translate into a formal DSL suitable for logical verification.
Even the most capable language models often fail to do this
without proper external guidance. To address this challenge,
VSA employs a self-corrective encoding approach (§ 5.1) that
enables the language model to iteratively refine its transla-
tion based on syntactic and semantic checks. Furthermore,
to achieve efficient yet robust verification, VSA provides a
two-tiered verification strategy (§ 5.2), adjusting verification
intensity according to the action’s significance.
C3. Simply flagging an action as incorrect is insufficient

for improving the overall practicality of Mobile GUI Agents.
To enhance their accuracy and reliability, we must provide
actionable feedback that correctly guides agents toward the

goal. However, LLM-generated feedback is often vague, un-
derspecified, or even incorrect, potentially leading to re-
peated errors or suboptimal actions. Therefore, VSA incorpo-
rates a structured feedback generation mechanism (Figure 6)
that systematically generates precise, rule-based feedback
by identifying unmet or violated conditions based on the
logical verification results.

3.2 SystemWorkflow
This section describes the high-level workflow of how VSA
logically verifies GUI agent actions.

App Development Phase. To enable rigorous rule-based
verification, VSA requires app developers to define the criti-
cal states and transitions relevant for verification using VSA
developer library (§ 4.2). This includes declaring applica-
tion state spaces and their update mechanisms, which are
already common practice in modern app development work-
flows [38–40] and requires minimal additional effort, typi-
cally involving 5 to 10 lines of code per state.

Intent Encoding. Given a natural language user instruc-
tion, the Intent Encoder first translates it into structured logi-
cal rules capturing essential constraints and logical depen-
dencies within the user instruction. For example, an instruc-
tion "Book tickets to the movie M at 7 pm" can be conceptually
translated into the following logical rule:

MovieInfo(title=“M”, time=7pm) → Book

where each constraint (e.g., title=“M”, time=7pm) is a condi-
tion must be satisfied before booking the ticket.

Verification. When the GUI agent generates a UI action,
the VSA developer library (§ 4.2), embedded within the mo-
bile application, intercepts the action and returns the antici-
pated state transition that would result from the execution of
this action. The Intent Verifier (§ 5.2) then evaluates whether
this state transition is valid according to the logical rules
generated earlier. For example, if the state transition indi-
cates that the name of the restaurant is ‘S’ instead of ‘R’,
the IsNameR Boolean variable would be evaluated to False,
indicating that the action is invalid and we can’t proceed to
Reserve.
Feedback Generation. Based on the verification result,

VSA provides structured feedback to the GUI agent. If verifi-
cation succeeds, the action is passed on to the mobile app for
execution, and Feedback Generator (Figure 6) guides subse-
quent actions. If verification fails, the action is discarded, and
Feedback Generator explains precisely which predicates or
constraints were unmet, guiding the agent toward generating
a correct action.
This workflow continues until either the task reaches a

final state or the GUI agent explicitly terminates the task de-
spite feedback, resulting in task failure. Through this system-
atic approach, VSA ensures that Mobile GUI Agents adhere
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Specification ::= Rule∗

Rule ::= (Pred ∧ · · · ∧ Pred) → Objective

| (Pred ∧ · · · ∧ Pred) → Done

Pred ::= Objective | StatePred(Constraint∗)
Constraint ::= Variable Operator Constant

Constant ::= String | Number | Boolean
| Date | Time | Enumeration

Operator ::= =|≠|≃|> |≥|< |≤|⊆|⊈

Figure 2: Simplified syntax of our DSL

to the logical constraints defined by user instructions while
interacting with mobile applications.

4 Domain-Specific Language
This section details the domain-specific language (DSL) and
the associated developer library. DSL and developer library
are the basis for formally representing user instructions and
GUI agent actions. Throughout the remainder of this paper,
we illustrate VSA using the running example: "Reserve restau-
rant R before 7 PM. If the restaurant is not available at that
time, do nothing."

4.1 Design of Domain-Specific Language
We first clarify the formal syntax and semantics of our DSL,
which enables the formal representation of the user intent
and desired app execution flow. Our DSL is designed to flex-
ibly express a wide range of constraints, execution flows,
and conditional branches found in natural language user
instructions.

4.1.1 Syntax and Semantics. Inspired by logic programming
languages (e.g., Datalog [41] and Prolog [42]), our DSL is
structured around Horn clauses. A Horn clause refers to a
logical formula with the specific structure 𝑝1∧𝑝2∧· · ·∧𝑝𝑛 →
𝑜 , where 𝑝1, 𝑝2, . . . , 𝑝𝑛, 𝑜 are predicates evaluating to boolean
values. Horn clauses are optimized for representing objective
attainment conditions and execution flow, commonly used
in program verification [43–46]. Each Horn clause signifies
that the preconditions for 𝑜 to be satisfied are 𝑝1, 𝑝2, . . . , 𝑝𝑛 .
The formal syntax of our DSL is summarized in Figure 2.

Specification and Rule. In our DSL, a single user instruc-
tion is expressed as a set of Horn clauses called specification.
Each Horn clause is called a rule, which represents a list of
predicates (preconditions) and the objective to be achieved
(conclusion). Rules break down a user instruction into mul-
tiple smaller steps, making it easier to verify complex in-
structions incrementally. Each rule consists of predicates

𝑅1 :RestaurantInfo(name = “R”)
∧ ReserveInfo(date = Today, time < 19:00, available = True)
→ Reserve

𝑅2 :Reserve ∧ ReserveResult(success = True) → Done

𝑅3 :RestaurantInfo(name = “R”)
∧ ReserveInfo(date = Today, time < 19:00, available ≠ True)
→ Done

Figure 3: Specification for the instruction “Reserve
restaurant R before 7 PM. If the restaurant is not avail-
able at that time, do nothing.”

and an objective which represent the precondition and inter-
mediate step, respectively. Predicates are composed of state
predicates and objectives of the other rules. State predicates
specify the conditions that must hold in the application for
the intermediate step to be achieved. When the objective of
another rule is used as a predicate, it establishes a precedence
relationship between rules. A rule is satisfied if all predicates
hold. If a rule ends with Done and such a rule is satisfied,
the task is considered complete.

State Predicate. State predicates represent abstract states
of applications. They ignore overly specific information (e.g.,
size of buttons) and represent only the information important
for verification. A state predicate𝑝 takes the form 𝑝 (𝑐1, . . . , 𝑐𝑛),
where each 𝑐𝑖 is a constraint. Each constraint allows us to
express a target state precisely. For example, a state predi-
cate of RestaurantInfoResult can have constraints on restau-
rant_name, location, and cuisine_type.
Constraint. A constraint 𝑐 has the form 𝑣𝑎𝑟 𝑜𝑝 𝑐𝑜𝑛𝑠𝑡

(e.g., 𝑥 = 10), where 𝑥 is a variable representing a specific
element within the application state (e.g., restaurant_name,
location). 𝑜𝑝 is a comparison operator, and 𝑐𝑜𝑛𝑠𝑡 represents
a constant value. The expression 𝑥 ;𝑜𝑝; 𝑐𝑜𝑛𝑠𝑡 returns true if
the variable 𝑥 meets the condition defined by the operator 𝑜𝑝
and the constant 𝑐𝑜𝑛𝑠𝑡 . If 𝑥 has not been observed in the app,
it defaults to undefined, making the constraint always false.
The variable 𝑥 can be one of the following six types: string,
number, Boolean, enumeration, date, and time. For example,
given a constraint 𝑥 ≥ 10, if the value of the variable 𝑥 was
observed to be 15 in the application, then the constraint is
considered true.

4.1.2 Running Example. Consider our running example of
reserving a restaurant. The instruction is translated into the
specification shown in Figure 3. RestaurantInfo is a pred-
icate that represents conditions on information about the
restaurant you want to reserve, with the constraint that the
name must be “R”. ReserveInfo is information about the
reservation, with the selected date, time, and availability as
constraints. The first rule, 𝑅1, means to make a reservation
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if the restaurant name is “R” and the reservation is avail-
able before 19:00 today. The second rule, 𝑅2, indicates task
completion if the reservation is confirmed to be successful.
The last rule, 𝑅3, represents another task completion if the
reservation is not available before 19:00 today.
Notice that the objective Reserve of rule 𝑅1 appears as a

predicate in rule 𝑅2. This signifies that 𝑅1 must be satisfied
before proceeding to 𝑅2.

Specification is dynamically evaluated during the agent’s
interaction with the application. Initially, all variables 𝑥 are
considered undefined. The values of these variables are up-
dated at runtime by the state transitions caused by the GUI
agent’s actions. These updates are governed by pre-defined
state update methods written in the developer library (see
§ 4.2). Whenever a variable’s value changes, the associated
constraint is re-evaluated.
For example, consider the ReserveInfo predicate. If the

GUI agent attempts to reserve restaurant “R” at 18:00 today,
the update rule will set the values of the date and time vari-
ables to Today and 18:00, respectively. When we evaluate
the constraints against the updated variables, date=Today
and time<19:00 will both be true. If availability is observed
to be true in the app state after selection, all constraints of
the ReserveInfo predicate are true, and the predicate itself
becomes true. This runtime evaluation of the specification
allows VSA to continuously monitor the agent’s progress
and verify whether its actions are leading the application
toward a state that satisfies the user’s intent.

4.2 Developer Library
To effectively generate specification from a user instruction
and evaluate it against agent’s actions, VSA requires a defi-
nition of two key components: (i) the set of candidate state
predicates (i.e., the application’s state space) that serve as
building blocks for the specification, and (ii) the mechanisms
through which each predicate’s constraint variables 𝑥 are
updated during app execution (i.e., state transitions).

To this end, VSA provides a developer library that empow-
ers app developers to explicitly define application states (as
state predicates) and their corresponding updatemechanisms
(as state transitions). This approach capitalizes on developers’
deep understanding of their application’s internal logic and
intended behavior. Although it requires additional developer
effort, it enables highly accurate state definitions suitable
for rule-based logical verification—a level of precision that
is unattainable with automated approaches like static code
analysis or LLM-driven dynamic analysis.
Furthermore, this approach aligns with established prac-

tices in modern mobile app development. Frameworks like
React Native (state management [38]), Android’s Jetpack
Compose (state hoisting [39]), and iOS’s SwiftUI (@State [40])

all encourage developers to manage app state and transitions.
By closely mirroring these familiar paradigms, VSA ensures
seamless, intuitive, and minimally invasive integration into
standard app development workflows.

4.2.1 States Definition. A state, in the context of the VSA
Library, is characterized by a set of typed variables (as de-
fined in § 4.1.1) that capture essential details relevant to the
application’s current context—each variable corresponds to
the constraint of the state predicate. Each state definition
includes i) name, ii) description, and iii) variables:

Developers can define these states using an external JSON
file or provided APIs (i.e., defineState()):

{

"name": "RestaurantInfo",

"description": "Information about the

restaurant you want to reserve.",

"variables": [{"name": "String"}]

}

These defined states are then used as candidate state pred-
icates when VSA’s Intent Encoder (§ 5.1) translates user
instruction into a specification.

4.2.2 Pre-action State Update Triggers. VSA enables devel-
opers to define triggers specifying when and how state vari-
ables are updated. Triggers correspond directly to mean-
ingful state transitions within the mobile application. Most
triggers are associated with UI interaction handlers (e.g.,
onClickListener) or critical points in the application logic.
Triggers return the expected state update before execut-

ing the action. The returned update is used to verify the
action. This ahead-of-time update provides two key benefits:
i) It prevents irreversible actions (e.g., financial transaction,
sending a message) from being executed if they violate the
user’s intent; ii) It allows the GUI agent to easily retry with
a different action without having to revert the effects of a
previous, incorrect action (e.g., deleting incorrect text input).

To facilitate pre-action updates, the VSA developer library
provides wrapper listeners for common UI input handlers.
These wrappers intercept user interactions and update the
relevant state variables according to the developer-defined
logic before executing the original event handler’s code. The
original ‘onClick’ code which performs the actual opera-
tion is executed only if the verification succeeds. For example,
consider the ‘RestaurantInfo’ state predicate defined earlier.
A developer could associate a trigger with the search button’s
click listener as follows:
searchButton.VSAOnClickListener (() -> {

safeMATE.updateState("RestaurantInfo", {

"name": searchTextField.getText (),

});

/* existing code for onClickListener */

});
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Another key advantage of developer-defined state predi-
cates is the control over granularity. In many mobile tasks,
individual atomic actions are not inherently meaningful. For
example, in an e-commerce application, entering individual
fields of a shipping address (street, city, zip code) is a set of
preparatory steps. The critical state change is the submission
of the complete address. Verifying every single atomic action
would be inefficient and could lead to false positives when
verification occurs before completing all preparatory steps.
By allowing developers to strategically define verification
checkpoints that have a meaningful impact on the task’s
execution, VSA can significantly improve the efficiency and
accuracy of task verification.

5 Verification Engine
5.1 Intent Encoder
Natural language instructions cannot be directly used for
formal verification; a formalization process is required. We
optimize the LFM-based autoformalization method in the
context of mobile agents to automatically convert instruc-
tions into specifications written in our DSL. Relying solely
on LFM’s output poses risks due to their probabilistic nature
and potential for hallucinations. To address this limitation,
we applied self-corrective encoding, which corrects errors au-
tomatically, and experience-driven encoding techniques that
gradually adapt to each app.

5.1.1 Self-Corrective Encoding. To ensure the encoded spec-
ification is correct and includes all relevant constraints, VSA
employs two complementary self-corrective techniques: (i)
rule-based syntax checking, and (ii) decoding-based seman-
tics checking. These methods allow the LLM to incrementally
identify, correct, and refine its translations, improving accu-
racy and reliability.

As an initial step, the Intent Encoder prompts the LLMwith:
i) the user’s natural language instruction and ii) the set of
developer-defined states (from the developer library). From
this information and user instruction, the Intent Encoder
generates a draft specification representing the user’s intent
using available states. The draft specification then undergoes
two checking stages:

Rule-based Syntax Checking. Inspired by conventional
programming languages, VSA checks that the generated
Specification strictly adheres to the DSL’s syntax (§ 4.1.1)
and that the types of constants 𝑐 used within the Specifica-
tion are consistent with the types of variables declared in
the developer-defined states. For example, if the LLM gen-
erates a state predicate like RestaurantInfo(name ≥ 100)
while the type of the name variable is defined as ‘String’
in the developer library, this inconsistency is immediately
flagged as a syntax error. If an error is detected, a structured

error message is returned to the encoding LLM as feedback,
guiding it toward a corrected translation.

Decoding-Based Semantics Checking. To further vali-
date the semantic correctness of the translation, the gener-
ated Specification is decoded back into a natural language
description using a separate decoder LLM. A checker LLM
then compares this decoded description to the original user
instruction, confirming that the encoding genuinely captures
the user’s intent rather than merely manipulating symbols.
If discrepancies are found, the checker LLM identifies the
root cause and provides feedback to the encoding LLM.

These complementary checking mechanisms significantly
improve the robustness and accuracy of the intent encoding
process, effectively mitigating risks associated with solely
relying on probabilistic LLM outputs.

5.1.2 Experience-driven Encoding. Although Self-corrective
Encoding significantly enhances translation accuracy, it oc-
casionally produces hallucinations when presented with an
enormous number of candidate state predicates.
To address this challenge, VSA introduces an Experience-

driven Encoding, which leverages previously successful en-
codings to guide subsequent translations. When an instruc-
tion is successfully translated and verified, its result spec-
ification is cached. Since a single specification consists of
multiple rules representing an instruction’s intermediate ob-
jectives, numerous instructions for the same application may
share similar rules. By retrieving and prioritizing predicates
based on past encoding experience, we can significantly re-
duce the search space for the LLM encoder, improving both
efficiency and consistency.

5.2 Intent Verifier
The verification process is straightforward. When the GUI
agent generates an action, the associated state updates (de-
fined via the developer library, § 4.2) are triggered. They
update the values of the variables 𝑥 of the corresponding
constraints and state predicates in the Specification. After
each update, the affected predicates are re-evaluated to a
new truth value.

Based on this basic mechanism, VSA performs two levels
of verification: Predicate-level Verification at the predicate
level and Rule-level Verification at the rule level.

Predicate-level Verification is performed at every state
update. Whenever a state predicate within the Specification
is re-evaluated due to a variable update, its truth value is
checked. If a predicate evaluates to false, this indicates a po-
tential violation of the user’s intent. For example, if the Speci-
fication includes the predicate RestaurantInfo(name = “R”),
and the agent’s action causes the name variable to be up-
dated to “S”, the predicate would evaluate to false, indicating
a potential violation of user intent.
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F1: "To perform Reserve, 1. RestaurantInfo that represents
Information about the restaurant you want to reserve should have
‘name’ equal to “R”; 2. ReserveInfo that represents reservation details
should have ‘date’ equal to “Today” and ‘time’ less than 19:00, and
‘available’ equal to True. So far, you have achieved step 1."

F2: "To complete the task, 1. perform Reserve 2. ReserveResult that
represents reservation result should have ‘success’ equal to "True"."

F3: "To complete the task, 1. RestaurantInfo that represents
Information about the restaurant you want to reserve should have
‘name’ equal to “R”; 2. ReserveInfo that represents reservation details
should have ‘date’ equal to “Today” and ‘time’ less than 19:00, but
‘available’ not equal to True. So far, you have achieved step 1."

Figure 4: An example of roadmap feedback. Each 𝐹𝑖
corresponds to Rule 𝑅𝑖 in the Specification

It is important to note that an incorrect predicate at this
stage does not necessarily mean a definitive error because
the updated state may represent an intermediate step neces-
sary to eventually reach the final, correct state. For example,
when buying three apples, the number of apples might be in-
cremented one at a time. Each intermediate update (1 apple,
then 2 apples) would result in a false value for a predicate
requiring three apples, until the final update.
Therefore, upon detecting a failed verification, VSA re-

verts the predicate update and provides the GUI agent with
soft feedback (Figure 6). This feedback serves as a warning,
indicating a potential deviation from the intended path, and
encourages the agent to double-check its subsequent actions.
Rule-level Verification is performed at irreversible or

critical checkpoints within the task execution. To identify
these checkpoints, we modified the GUI agent’s prompt so
that it generates a critical flag along with the action if that
action is intended to directly achieve one of the objectives 𝑜
within the Specification (e.g., Reserve)

When theGUI agent generates a critical action,VSA checks
for the complete satisfaction of the conditions required to
achieve a specific Objective 𝑜 . If any predicate in the corre-
sponding rule is unsatisfied, the action is considered invalid
and blocked. Hard feedback is provided to the agent, detailing
the specific unmet conditions. This prevents the execution
of potentially irreversible or incorrect actions that would
definitively violate the user’s intent.
These two-tiered verification approach guides the agent

toward its objectives while ensuring the safe execution of
high-risk actions.

6 Structured Feedback Generator
The effectiveness of a verification system hinges not only
on error detection but also on its ability to guide the agent
towards correct behavior. This section explains how VSA
generates structured feedback based on verification results.

VSA provides three distinct types of feedback: i) Roadmap
Feedback, ii) Predicate-level Soft Feedback, and iii) Rule-level
Hard Feedback.
Roadmap Feedback. VSA provides roadmap feedback that
outlines the overall path toward task completion regardless
of verification outcome. Because the logical Specification
of VSA explicitly encodes the preconditions required for
achieving the user’s objective, it naturally serves as a com-
prehensive guideline for the GUI agent.
Specifically, the Feedback Generator converts each rule

in the Specification into a natural language explanation, de-
tailing which predicates must be satisfied for each objective.
These explanations incorporate developer-defined descrip-
tions for each state predicate, constraints, and currently sat-
isfied predicates. For example, Figure 4 demonstrates the
roadmap feedback for the restaurant reservation scenario
after successfully searching for restaurant “R”.
Unlike approaches relying on ambiguous action histories or
abstract planning, this structured guidance clearly commu-
nicates both current progress and next objectives.
Predicate-level Soft Feedback. When predicate-level

verification fails (i.e., a state predicate evaluates to false),
VSA provides feedback indicating that the agent’s action
may be incorrect. This feedback includes a description of
the desired state for the violated predicate, allowing the
agent to reconsider its action. Because predicate-level errors
could represent intermediate steps rather than genuine er-
rors (as described in § 5.2), soft feedback is advisory rather
than strictly prohibitive. If the GUI agent generates the same
action even after receiving the feedback, VSA permits the
action, acknowledging its non-critical nature.

Rule-level Hard Feedback. For critical actions subject to
rule-level verification,VSA provides comprehensive feedback
at the rule level, detailing all state predicates that remain
unfulfilled. Unlike soft feedback, if the GUI agent generates
the same action again after receiving hard feedback, VSAwill
not allow the action to proceed. Instead, it enforces that all
required state predicates must be satisfied before permitting
the critical action to be executed.

Through these structured, deterministic feedback mecha-
nism, VSA effectively guide GUI agents toward correct task
completion, significantly outperforming existing reflection-
based methods. By eliminating ambiguity and providing
clear, actionable guidance grounded in formal logic, VSA
enhances the reliability, safety, and practicality of automated
mobile task execution.

7 Implementation
Our VSA implementation is designed as a modular compo-
nent that can be seamlessly integrated with existing GUI
agents without requiring modifications to their underlying
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architecture. VSA is implemented in using Python, and its
Intent Encoder leverages off-the-shelf LFM GPT-4o.

Handling unpredictable state updates. While VSA fo-
cuses on pre-action verification, it also supports post-action
updates where the outcome of an action is unpredictable
or depends on external factors (e.g., the result of a network
request). In these cases, developers can directly use the ‘up-
dateState()’ API without a wrapper listener to update the
state after the desired information is known. This allows for
verification even in scenarios where pre-action prediction is
impossible.

Developer Library Guidelines. Developers should care-
fully determine the granularity of State Predicates to suit
their application context. Overly fine-grained State Predi-
cates can make the encoded specification too detailed, in-
creasing the false positive rate. Conversely, coarse-grained
State Predicates may introduce loopholes in the encoded
specification, leading to a higher false negative rate. Devel-
opers must find a sweet spot in this trade-off based on their
application’s usage patterns. To assist with this, the VSA
Library provides detailed documentation and guidelines on
effectively defining and utilizing State Predicates to achieve
robust verification. Given the potential severity of false neg-
atives, it’s recommended to begin with a fine-grained ver-
ification first and then iteratively refine the predicates to
minimize false positives.
String Similarity. From the perspective of structural

equivalence, strings with different notations or synonymous
words are treated as distinct entities (e.g., Jan 01 and Janu-
ary 1st). However, user instructions may not exactly match
the values in the application, making it necessary to check
for semantic equivalence rather than structural equivalence.
To achieve this, we used OpenAI’s text-embedding-3-small
model [1] to generate semantic embeddings and compared
them using cosine similarity. Based on empirical studies, we
determined an equivalence threshold of 0.7.

8 Evaluation
In this section, we demonstrate the performance of VSA in
three key aspects: i) verification accuracy, ii) feedback effect,
and cost&latency. To this end, we deployed M3A [12], a
simple yet powerful mobile GUI agent powered by GPT-4o,
on a Google Pixel 8 smartphone and integrated it with VSA.
This setup allows VSA to validate the agent’s behavior in
runtime while enabling autonomous app execution.
Baselines & VSA Variants. To evaluate VSA, we com-

pare it with two LFM-based reflection schemes: Pre-action
reflection [16] and Post-action reflection [8], both of which
utilize GPT-4o as their base LFM. For VSA, we evaluate two
variants: VSA-cold and VSA-warm. VSA-cold encodes user
instructions solely using self-corrective encoding, without

experience-driven encoding. On the other hand, VSA-warm
leverages both self-corrective encoding and experience-driven
encoding, assuming that a cached list of candidate predicates
is available for the given instruction (see § 5.1 for details).

8.1 Dataset
The primary contribution of VSA is its ability to proactively
verify and provide feedback to a GUI agent when automat-
ing mobile tasks. To comprehensively evaluate VSA’s effec-
tiveness, we constructed a dataset consisting of 300 user
instructions. This dataset is divided into two complementary
subsets: Correct and Wrong datasets, each containing 150
instructions.
The Correct dataset represents scenarios where the GUI

agent’s execution path precisely matches the user’s instruc-
tion. This set contains instructions paired with their ground-
truth execution paths (sequences of UI actions that correctly
fulfill the instruction). It is designed to evaluate True Nega-
tives (correctly identifying a valid execution) and False Pos-
itives (incorrectly flagging a valid execution as erroneous).
Within this dataset, we included 125 instructions from the
widely adopted LlamaTouch dataset [15], covering 18 mobile
applications. However, since the LlamaTouch instructions are
predominantly simple (average 5.67 steps), similar to other
datasets [4, 12, 14, 47], we augmented our dataset with 25
additional complex instructions, referred to as the Challenge
dataset. These instructions feature instructions with signifi-
cantly greater complexity, including longer action sequences,
multiple constraints, and conditional branches. These chal-
lenging instructions span 9 different applications, with an
average of 19.16 steps and a maximum length of 40 steps. An
example of such a challenging instruction in Google Maps is:
“I am planning to visit the Cattedrale di Santa Maria del Fiore
soon. First, find the Cattedrale di Santa Maria del Fiore on the
map and then look for nearby attractions. Next, identify one
attraction with a rating of 4 stars or higher and at least 2000
reviews, then show me the wheelchair-accessible walking route
from the Cattedrale di Santa Maria del Fiore to that attraction.”
To thoroughly evaluate error-detection performance, we

constructed a complementary Wrong dataset by deliberately
introducing mismatches between instructions and their cor-
responding execution paths from the Correct dataset. Specif-
ically, we altered key details in the original instructions to
create discrepancies. For instance, we modified the instruc-
tion: "On Play Books, turn to the search page and check for
top-selling books." to: "On Play Books, turn to the search page
and check for newly released books," Because the execution
path no longer aligns with the modified instruction, these
scenarios effectively test the verification system’s ability to
detect errors— True Positive (correctly identified errors) and
False Negative (missed errors).
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Figure 5: Verification accuracy

Finally, as described in § 4.2, VSA relies on developer-
defined state definitions and state-update triggers. However,
since the LlamaTouch dataset uses commercial applications
without available source code, we manually annotated each
application’s GUI screens with the required predicate infor-
mation and state transitions using a GUI annotation tool.
This manual annotation achieves the same effect as direct
integration via the developer library, effectively replicating
the developer library’s intended functionality.

8.2 Verification Accuracy
Figure 5 presents the verification accuracy of different verifi-
cation methods, evaluated using standard metrics: Accuracy,
Precision, Recall, and F1 Score. Notably, VSA consistently
outperforms reflection-based methods across all metrics and
datasets, achieving near-perfect accuracy on the LlamaTouch
dataset. One interesting observation is the high recall per-
formance of Pre-action Reflection on the Challenge Dataset.
However, this comes at the cost of a high false positive rate
(60%), leading to excessive error flagging when instructions
become complex. As a result, while it has a higher likelihood
of detecting any existing error (high Recall), the probability
that a flagged error is actually an error remains low (low
Precision).

Analysis. For the relatively simpler LlamaTouch dataset,
Post-action Reflection achieves performance comparable to
VSA. This is because it leverages the action’s resulting screen
state as additional context for verification, boosting accuracy
compared to Pre-action Reflection. However, it has critical
limitations: it cannot correct irreversible actions. Moreover,
our results indicate that this advantage diminishes signifi-
cantly, as instructions become more complex and involve
longer action sequences (as seen in the Challenge Dataset).
This trend highlights the compounding effect of errors stem-
ming from over-reliance on LFMs for verification.

In contrast,VSA enables pre-action verificationwhile main-
taining high performance across both datasets. This demon-
strates the effectiveness and scalability of VSA’s design,
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Figure 6: Verification accuracy with Majority-at-N

which encodes the specification once and performs subse-
quent verification in a rule-based manner, regardless of task
complexity or length. Notably, VSA-Warm achieves nearly
perfect results on the LlamaTouch dataset and significantly
surpassing all othermethods on the Challenging dataset. This
demonstrates the potential of VSA’s design when equipped
with a well-constructed memory of candidate state predi-
cates. While the construction of such a memory (e.g., offline
exploration, user demonstrations, runtime analysis) is be-
yond the scope of this paper (see § 10), the results clearly
underscore the promise of VSA.
Randomness Mitigation. Although VSA employs only

one LFM query per task, when repeatedly verifies the same
instruction, inconsistent results may still arise due to the
probabilistic nature of LFM. The same incosistency applies
to all methods that includes LFM in its process, including
reflection methods. To mitigate this randomness, a majority
voting approach can be employed, wherein the verification
process is repeated 𝑁 times, and the final outcome is deter-
mined by majority voting (referred to as Majority at N ).

Figure 6 illustrates the eachmethod’s verification accuracy
for 50 instructions in the Challenge dataset as 𝑁 increases.
We observed that while reflection-based schemes consis-
tently shows lower accuracy, both VSA-Cold and VSA-Warm
show significant improvements, reaching 96% and 100%, re-
spectively. This disparity stems from differences in their
verification mechanisms: reflection schemes produce direct
true/false responses with lower randomness, whereas both
VSA-Cold and VSA-Warm generate logical formulas with
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multiple predicates through the LFM, making them more
susceptible to stochastic variations. These findings suggest
that VSA has significant room for performance enhancement
throughmajority voting for verification. However, it is worth
noting that excessively increasing the number of verification
iterations can introduce considerable overhead in terms of
latency and cost. A detailed analysis of this overhead issue
is provided in § 8.4.

8.3 Effectiveness of Feedback Generation
The usefulness of a verification system lies not just in identi-
fying errors, but in improving the GUI agent’s performance
through feedback generation. This section compares the ef-
fectiveness of VSA’s logic-based feedback generation with
that of the LFM-based feedback used in reflection methods.

To evaluate this, we instructed the M3A GUI agent to exe-
cute 25 challenging instructions from our Challenge dataset.
Initially, without external feedback (Agent w/o feedback),
M3A successfully completed only 10 out of 25 tasks. Next, we
integrated each verification system to M3A and re-executed
each instruction, observing whether previously failed tasks
could now be correctly performed. Note that we evaluated
using our own dataset over LlamaTouch dataset because
LlamaTouch’s ground truth fails to account the multiple
paths often present in real-world mobile tasks. On the other
hand, our Challenge dataset includes hand-crafted ground
truth encompassing multiple valid execution paths, provid-
ing more accurate evaluation than LlamaTouch’s single-path
approach which showed poor correlation with human evalu-
ation (<60% fidelity).
Figure 7 summarizes these results. Notably, neither pre-

action nor post-action reflection successfully corrected any
previously failed tasks. In contrast, VSA-Cold feedback cor-
rected 9 out of 15 tasks (60%), and VSA-Warm successfully
corrected 13 tasks (86.7%). It is worth noting thatVSA-Warm’s
two failures stemmed from unconventional application de-
signs, not from the inability to understand the execution con-
text. For instance, a clock application required time input as a
single numerical sequence (hour, minute, second combined)

rather than separate components. This unconventional in-
teraction hinders VSA ’s ability to provide meaningful feed-
back. Nevertheless, given that M3A is a state-of-the-art GUI
agents powered by one of the most powerful LFM (gpt-4o),
achieving this significant enhancement underscores VSA’s
effectiveness.
This superior performance stems from VSA’s ability to

generate precise, deterministic feedback, clearly indicating
what aspects of the agent’s execution need to be corrected.
Furthermore, VSA’s roadmap feedback proactively guides
the GUI agent toward the correct execution path, preventing
errors from occurring at the first place. For example, with
the instruction: "Go to the r/technology subreddit. In the most
controversial post in your field over the past month, go to the
comments on that post. Find the most controversial comment in
the comments, and upvote that comment," the M3A agent w/o
feedback repeatedly toggled the upvote action due to unclear
state tracking, not knowing that it has already upvoted. Yet,
when given a clear guideline saying that it has fulfilled the
precondition to set ‘upvote’ to ‘true’, M3A to successfully
complete the task without unnecessary repetition.

In contrast, reflection methods, which rely on an LFM for
feedback generation, frequently produce misleading guid-
ance and fails to correct any of the previously failed instruc-
tions. Furthermore, we observed cases where reflection ini-
tially flagged an action as incorrect but reversed its decision
after the GUI agent repeated the same action, illustrating
inherent indecisiveness and unreliability in its feedback gen-
eration.
One potential limitation of VSA, though not observed

in our evaluation, is that false positive errors could prema-
turely terminate tasks that the GUI agent might have other-
wise completed successfully. Unlike reflection-based meth-
ods, where an agent can typically recover quickly– within
1~3 actions – after a misleading feedback, a single incor-
rect predicate in the Specification could cause VSA to halt
task execution entirely. Nevertheless, our evaluation clearly
demonstrates that the practical benefits of VSA’s decisive
feedback significantly outweigh the potential risks of rare
false positives. Particularly in safety-critical systems, such
as automated mobile tasks, strictly preventing erroneous
actions—even at the expense of occasional false positives—
is significantly more beneficial than allowing potentially
harmful actions to proceed, as traditional reflection methods
currently do.

8.4 Latency and Cost
VSA not only enhances verification reliability but also sig-
nificantly reduces latency and cost overhead. Figure 8 plots
the additional latency and cost incurred by verification as a
function of task length (number of steps). As shown by the
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Figure 8: Latency and cost overhead of verification methods with respect to the number of action steps.

fitted lines, VSA consistently maintains lower overhead than
reflection-based methods across all task lengths. Notably, be-
cause reflection-based approach requires an additional LFM
query for each action, its overhead scales proportionally
with task length.While not depicted in the graph for clarity,
its overhead is comparable to that of the GUI agent itself,
effectively doubling the total expense.

In contrast, VSA shows near constant overhead, indepen-
dent of task length. This is because VSA uses LFM only once
– when encoding user instructions into formal specifications.
All subsequent action verifications are performed using rule-
based logic. Although Figure 8 shows a slight upward trend
in VSA’s overhead for longer tasks, this increase is attributed
to more complex instructions naturally producing longer
specifications with additional constraints. However, this in-
crease remains trivial compared to the 𝑂 (𝑁 ) complexity of
reflection-based methods.

GUI Agents inherently incur substantial latency and cost
due to their reliance on complex cognitive reasoning. As
shown in Figure 8, tasks exceeding 10 steps can cost over $1
and take nearly a minute to complete. Therefore, minimizing
this overhead is as critical for practical deployment as achiev-
ing high accuracy. VSA thus proves to be more suitable and
practical for real-world deployment across all dimensions
compared to existing approaches.

9 Related Work
Validating LFM responses. The probabilistic nature of
LFMs often leads to hallucinated or inaccurate content. Nu-
merous methods have been proposed to mitigate these issues,
including Chain-of-Verification (CoVe) [48], concept-level
validation and rectification (EVER) [49], self-refinement [50],
and retrieval-augmented knowledge grounding (Re-KGR) [51].

These approaches typically leverage additional LLM invoca-
tions for self-reflections [8, 16] or rely on external validation
against ground-truth data or knowledge bases [52–56]. How-
ever, in mobile task automation, actions of a mobile GUI
agent lack a ground truth and its semantic ambiguity makes
verification exceptionally difficult. VSA effectively handles
this challenge by designing a domain-specific language (DSL,
§ 4.1) and developer library (§ 4.2) that effectively capture
the underlying semantics of these ambiguous GUI actions.

Leveraging Formal Logic forAI Safety. Recent research
has explored the use of formal logic to ensure the safety and
reliability of AI agents, particularly in areas like planning
and control [18–21, 57, 58]. Notably, SELP [20] ensures safe
and efficient robot task planning by integrating constrained
decoding and domain-specific fine-tuning. Ziyi et al. [19]
proposed a safety module for LLM-based robot agents by
converting natural language safety constraints into Linear
Temporal Logic. However, while previous works typically
focus on agents with a pre-defined safety concerns such as
map navigation or indoor task planning [18–21], our system
targets agents with a enormous number of environment, i.e.,
mobile apps. To handle different environments of mobile
apps, our optimized autoformalization algorithm effectively
translates safety requirements for diverse set of mobile tasks.

10 Discussion & Future Work
Piggybacking on App Development Frameworks. The
current VSA implementation relies on developer-defined
state and transition definition. However, given that modern
mobile development frameworks like React Native, Jetpack
Compose, and SwiftUI [38–40] already incorporate built-in
state managements, there is significant potential to "piggy-
back" on these existing mechanisms. Integrating VSA in this
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way could streamline the development process and reduce
the overhead associated with adopting VSA.

Automated StateDefinition via LFM.Another approach
for simplifying VSA’s integration is automating the state def-
inition process using LFMs. Existing GUI agents [4, 6, 7]
often employ LLM-powered screen analysis to automatically
annotate GUI elements and infer application state. A similar
approach could be adapted to identify and define candidate
state predicates for VSA. However, while this automation
could reduce developer effort, it introduces inherent risks due
to the probabilistic nature of LLMs. Relying on potentially
inaccurate LLM-derived state definitions could compromise
the system’s reliability. Therefore, while LLM-based automa-
tion offers a potential convenience, the current approach of
developer-defined states ensures the precision necessary for
a robust verification system.

Automated PredicateMemoryConstruction.As demon-
strated in the evaluation, VSA-Warm’s performance signif-
icantly benefits from the pre-populated predicate memory.
However, the current implementation relies on VSA-Cold to
successfully complete tasks before they can be added to the
memory, creating a performance bottleneck. One promising
approach involves leveraging direct user feedback. By simply
asking the user whether a task was completed successfully
or not, we can obtain a ground-truth verification result. This
user-provided ground truth can then be used to selectively
populate the predicate memory. This approach would bypass
the VSA-Cold bottleneck and accelerate the creation of a
robust and accurate predicate memory, leading to improved
overall performance.

11 Conclusion
This paper introduced VeriSafe Agent (VSA), a novel logic-
based verification system designed to enhance the safety
and reliability of Mobile GUI Agents. Through VSA, we have
demonstrated that logic-driven verification can effectively
safeguard GUI agents against the inherent uncertainties of
LFM-based task automation. As AI-driven tasks becomes
increasingly integrated into our daily life, VSA presents a
crucial step toward safer use of AIs.
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