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Incorrect compiler optimizations can lead to unintended program behavior and security vulnerabilities.
However, the enormous size and complexity of modern compilers make it challenging to ensure the correctness
of optimizations. The problem becomes more severe as compiler engineers continuously add new optimizations
to improve performance and support new language features. In this paper, we propose Optimuzz, a framework
to effectively detect incorrect optimization bugs in such continuously changing compilers. The key idea is to
combine two complementary techniques: directed grey-box fuzzing and translation validation. We design a
novel optimization-directed fuzzing framework that efficiently generates input programs to trigger specific
compiler optimizations. Optimuzz then uses existing translation validation tools to verify the correctness of
the optimizations on the input programs. We instantiate our approach for two major compilers, LLVM and
TurboFan. The results show that Optimuzz can effectively detect miscompilation bugs in these compilers,
outperforming state-of-the-art tools. We also applied Optimuzz to the latest version of LLVM and discovered
55 new miscompilation bugs.
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1 Introduction

Real-world compilers are large, complex, and constantly evolving. Developers frequently add new
features, fix bugs, and improve the performance of compilers. This makes reasoning about the
correctness of compilers a challenging task. For example, the LLVM compiler infrastructure [24]
comprises over 1.5M lines of code and has over 30K commits by 1.8K contributors from Jan 2024 to
Sep 2024. In particular, reasoning about compiler optimization passes is more challenging because
they are frequently updated and represent one of the most complex and error-prone parts of the
compiler [68]. Any bug in compiler optimization passes that silently changes the behavior of the
compiled program may result in critical problems such as security vulnerabilities [5–10].
Recent studies have demonstrated that translation validation (TV) [23, 57, 61] is a promising

approach to ensure the correctness of real-world compilers. Given a program, TV tools such as
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Alive2 [57] check whether a compiler optimization preserves the semantics of the input program.
They show semantics preservation by checking the refinement relation between the two programs
before and after each individual optimization [61]. Combined with an automated theorem prover
such as SMT solver, compiler engineers and users can use TV without having domain knowledge in
formal verification. TV tools may not validate the compilation of large input programs due to the
limitations of the automated theorem prover in practice. However, working on small input programs
is still helpful for increased assurance of compiler correctness. For example, LLVM uses Alive2 as a
regression testing tool for its unit test suite when optimizations are added or modified [57].
However, the effectiveness of TV depends on a provided set of input programs (e.g., LLVM’s

test suite). This is because they only prove the correctness of the compiler on the provided input
programs. This is a fundamental problem and cannot be theoretically resolved because there are an
infinite number of possible programs. To practically address this limitation, one can combine TV
tools with a fuzzer to generate new input programs that trigger compiler optimizations [13, 23, 28].
However, this simple combination may not be effective when optimization conditions are complex
as compiler optimizations are only triggered when input programs satisfy specific constraints. This
in turn hinders the effectiveness of TV tools in proactively detecting miscompilation bugs.
In this paper, we present Optimuzz, a framework to continuously validate the correctness of

compilers. Given an update of the compiler source code, Optimuzz systematically selects a target
location (i.e., source line) to validate the updated optimizations. Then, Optimuzz leverages directed
fuzzing [2, 4, 11, 20, 21] to generate input programs that are likely to reach the target. Directed
fuzzing is an emerging technique that generates inputs to reach specific target locations in the
program under test. This technique has been successfully applied to a variety of domains, such as
patch testing, crash reproduction, and static analysis alarm inspection [2, 4, 21]. In our context,
this fuzzer aims to generate input programs that trigger specific compiler optimizations at the
target location. Optimuzz then uses existing TV tools to check the correctness of the optimizations
on those programs. In addition to such continuous validation, our idea can also be generalized for
batch mode validation which targets all the optimizations in the latest version of the compiler.

There are two key challenges in designing a fuzzer for compiler validation. First, we must have
an effective guidance strategy for the fuzzer to trigger the target optimizations. Conventional grey-
box fuzzers typically rely on coverage feedback to guide the generation of inputs. When a newly
generated input covers an unvisited program point, fuzzers consider the input as promising and keep
it for further mutation. However, since compilers are typically large and complex, feedback from
points unrelated to the target optimization can negatively impact the effectiveness of the fuzzer. To
address this challenge, we design a selective-coverage-guided search strategy that focuses exclusively
on the relevant parts of the compiler code that are likely to lead to the target optimization.
Second, the fuzzer must have an effective mutation strategy to generate input programs to

quickly trigger the target optimizations. Unlike conventional fuzzing which handles input as a
sequence of bytes or formatted documents (e.g., XML) [14], we must generate programs that satisfy
certain semantic constraints (i.e., optimization conditions). This challenge makes naive fuzzing
with random mutation highly ineffective. We address this challenge by designing a data-flow-based
targeted mutation strategy. Our mutation strategy is inspired by the common structures of code
transformation rules in compiler optimizations. Such rules typically check the existence of certain
code patterns where each of the matched code snippets is closely related to one another along the
data-flow. Based on this observation, Optimuzz prioritizes mutating code snippets related to the
key statements involved in the target optimizations.
We instantiate Optimuzz with two real-world compilers, LLVM and TurboFan. LLVM is a

widely used compiler infrastructure for many programming languages such as C, C++, and Rust.
TurboFan is the optimizing JIT (just-in-time) compiler in the V8 JavaScript engine [16]. Our
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experiments show that Optimuzz effectively detects miscompilation bugs in these compilers. In
particular, Optimuzz was able to reproduce 23 bugs in LLVM and 4 bugs in TurboFan significantly
faster than state-of-the-art fuzzing techniques. Moreover, Optimuzz was able to detect 55 new
miscompilation bugs in the latest version of LLVM.

We summarize our contributions below:
• We present a novel approach, Optimuzz, to continuously validate the correctness of compiler
optimizations.
• We design an optimization-directed fuzzing technique that effectively generates input programs
to trigger specific compiler optimizations.
• We demonstrate the effectiveness of Optimuzz by applying it to two real-world compilers, LLVM
and TurboFan. Optimuzz reproduced known miscompilation bugs in LLVM and TurboFan
faster than state-of-the-art tools and discovered 55 new miscompilation bugs in LLVM.
• Our tool and data are available at our website (https://prosys.kaist.ac.kr/optimuzz) and Zenodo
(https://doi.org/10.5281/zenodo.15037303).

2 Problem Definition

We formalize compiler update and its relation to TV. We found no prior work explaining this topic.

2.1 Formal Definition of Compiler Update

We can define the semantics of a compiler as a function from a source program to a target program,
C : P𝑠𝑟𝑐 → P𝑡𝑔𝑡 , where P𝑠𝑟𝑐 and P𝑡𝑔𝑡 are sets of all syntactically valid source and target programs
respectively. We define that two compilers C and C′ are equal if for any source program 𝑃𝑠𝑟𝑐 ∈ P𝑠𝑟𝑐 ,
C(𝑃𝑠𝑟𝑐 ) = C′ (𝑃𝑠𝑟𝑐 ) where = is the syntactic equality between the two target programs.
If compilers C and C′ are not equal, there must exist a set of source programs that makes the

two compilers have diverging behavior, i.e., {𝑃 | C(𝑃) ≠ C′ (𝑃)}. We will call this program set a
difference between two compilers and use the notation 𝐷 (C, C′). A typical subset of 𝐷 (C, C′) in
the real world is a set of unit test programs that are attached to every compiler commit. For example,
in the LLVM compiler community, it is strongly suggested that each commit must include at least
one new unit test program that will compile into a different target program with the commit.

Ideally, we can prove a sequence of compiler updates C0, C1, · · · , C𝑘 to be correct by using of 𝐷
and TV. We can show that C𝑘 is correct under the assumption that C0 is also correct as follows:

∀𝑃 ∈ 𝐷 (C𝑖 , C𝑖+1). Ω(𝑃, C𝑖+1(𝑃)) = Correct for 0 ≤ 𝑖 < 𝑘

where Ω is a TV tool that checks the correctness of the compilation result. However, performing this
in practice is hard because 𝐷 (C𝑖 , C𝑖+1) will contain an infinite number of programs. For example,
if C𝑖+1 is C𝑖 with a new arithmetic optimization “(𝑥 + 𝑦) − 𝑦 =⇒ 𝑥” added, 𝐷 (C𝑖 , C𝑖+1) will be an
infinite set of programs where each program contains “(𝑥 + 𝑦) − 𝑦” as a subexpression.
To address this problem, we define the kernel of the set 𝐷 . The kernel 𝐷𝐾 (C𝑖 , C𝑖+1) is a subset

of 𝐷 (C𝑖 , C𝑖+1) such that every 𝑃 ∈ 𝐷𝐾 (C𝑖 , C𝑖+1) is 1-minimal [67]. A program 𝑃 is 1-minimal if it
no longer activates the optimization if any element from 𝑃 is removed. The concept of program
reduction allows us to define the partial ordering between programs; if 𝑃 can be reduced from 𝑄 ,
we denote it as 𝑃 ⊑ 𝑄 . Then, the kernel is the set of programs that are minimal in ⊑. For example,
consider an optimization that rewrites the expression “𝑥 +𝑦 −𝑦” into “𝑥”. Programs “𝑥 +𝑦 −𝑦” and
“𝑥 +𝑦 −𝑦 −𝑧” triggers this optimization. However, since we can reduce “𝑥 +𝑦 −𝑦 −𝑧” to “𝑥 +𝑦 −𝑦”,
the kernel is the singleton set {“𝑥 +𝑦 −𝑦”}. This property guarantees the uniqueness of the kernel.
Thus, if C𝑖+1(𝑃) is correct by TV for every 𝑃 ∈ 𝐷𝐾 , then C𝑖+1(𝑃) for 𝑃 ∈ 𝐷 is also correct. For

example, checking only one unit test program containing the expression “(𝑥 +𝑦) −𝑦” using TV will
suffice to prove the correctness of the compiler update that adds the optimization “(𝑥 +𝑦) −𝑦 =⇒ 𝑥”.
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2.2 Approximating 𝐷𝐾 (C, C′) via Directed Fuzzing

Even though the kernel 𝐷𝐾 (C, C′) compactly represents the difference between two compilers, it
may contain infinitely many programs, which makes running a TV tool on all of them impractical.
For example, a compiler developer may generalize optimization “(𝑥+𝑦)−𝑦 =⇒ 𝑥” to “(𝑥+𝑦)−𝑦′ =⇒
𝑥” if 𝑦 and 𝑦′ are known to be equal using data flow analysis. Note that the kernel of this update is
an infinite set of programs where 𝑦 and 𝑦′ are syntactically different but semantically equal.
In addition, finding 𝐷𝐾 (C, C′) is hard in practice. Constructing the set 𝐷 (C, C′) will require

the formally defined semantics of C and C′, which are large software written in full-fledged
programming languages like C++. Even if 𝐷 could be successfully constructed, getting its kernel
will require a precise understanding of the compiler update. This can be challenging when advanced
compiler analysis is involved.

Therefore, rather than manually finding the exact kernel for every compiler update, we choose
an automatic approach that finds an approximation of the kernel. For automation, we will utilize
a directed fuzzer to generate random programs to compile. Directed fuzzing is a technique that
generates input to reach a specific target location in a program under test. In our problem, the
target location is the source code location that is affected by the compiler update and the set of
generated input programs will be an approximation of the kernel set.

For a better approximation, we propose two strategies. First, we start the fuzzing with unit test
programs attached to a compiler update. Compiler developers are typically encouraged to include
1-minimal unit tests which activate the target optimization. This means that ideally the unit tests
are already included in the kernel. When the updated optimization is incorrect, the attached passing
unit tests and bug-triggering programs are also in the kernel. Thus, we search for miscompilation
bugs in the kernel by starting with the unit tests. Second, we look into the actual compiler updates
and properly use their line numbers as the target locations for the directed fuzzer. Compiling
any program in the kernel must arrive at the target source location, otherwise, the result of the
compilation would not have been affected by the update.

2.3 𝐷𝐾 , Rewrite Rules and Target Location of Directed Fuzzer

Conceptually, a compiler is a big set of rewrite rules whose application order is carefully orchestrated.
In this perspective, a compiler update can be categorized into three types: (D1) adding a new rewrite
rule, (D2) removing a rewrite rule, or (D3) updating an existing rule. Even if there are other kinds
of compiler updates such as extending its intermediate representation or restructuring the directory
hierarchy, the three rewrite-rule updates will consist significant portion of the compiler updates.

If a compiler update adds a new rewrite rule (D1), the kernel of the update𝐷𝐾 is a set of programs
whose compilation will invoke the new rewrite rule. If an update removes an existing rewrite rule
(D2), its kernel is a set of programs that invoked the deleted rewrite rule in the past. If a compiler
update is a modification of an already existing rewrite rule (D3), the kernel 𝐷𝐾 is a set of programs
that do not fire the old rewrite rule but fire the new rewrite rule, or vice versa.

When the rewrite rules are implemented in the compiler source code, they often have a common
code structure in practice. For example, peephole optimizations of LLVM are typically implemented
as if-statements whose condition matches the input pattern (left-hand side of the rule) and the
body of the conditional describes its output expression (right-hand side of the rule). The following
example of an optimization in LLVM replaces a remainder operation with a bitwise-and operation:

(𝑋 % 2𝑁 ) < 0 ? (𝑋 % 2𝑁 ) + 2𝑁 : (𝑋 % 2𝑁 ) =⇒ 𝑋 & (2𝑁 − 1).
This rule is implemented in LLVM as a function shown in Fig. 1. Note that this function consists
of a series of condition checks and the body of the main if statement (Line 15) corresponds to the
right-hand side of the rule.
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1 static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC, IRBuilderBase &Builder) {

2 Value *Cond, *Tr, *Fl = SI.getCondition(), SI.getTrueValue(), SI.getFalseValue();

3 ICmpInst::Predicate Pred;

4 Value *Op, *RemRes, *Remainder;

5 ...

6 if (!(match(Cond, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) &&

7 isSignBitCheck(Pred, *C, TrueIfSigned)))

8 return nullptr;

9
10 - if (match(Tr, m_Add(m_Value(RemRes), m_Value(Remainder))) &&

11 + if (match(Tr, m_Add(m_Specific(RemRes), m_Value(Remainder))) &&

12 match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) &&

13 IC.isKnownToBeAPowerOfTwo(Remainder, true) &&

14 Fl == RemRes)

15 return FoldToBitwiseAnd(Remainder); // code transformation

16 ...

17 return nullptr;

18 }

Fig. 1. Miscompilation bug in LLVM (Issue 89516 [52]) and its patch
define i8 @src(i8 %x, i8 %y) {

%n = shl i8 1, %x

%c = icmp slt i8 %y, 0

%r = srem i8 1, %n

%t = add i8 %r, %n

%s = select i1 %c, i8 %t, i8 %r

ret i8 %s

}

; before optimization: @src(0, 255) = 1

(a)

define i8 @tgt(i8 %x, i8 %y) {

%a = shl i8 1, %x

%b = add i8 %a, -1

%c = and i8 1, %b

ret i8 %c

}

; after optimization: @tgt(0, 255) = 0

(b)

Fig. 2. LLVM IR code before (a) and after (b) the incorrect optimization in Fig. 1.

We can rely on this practice to effectively decide which program locations a directed fuzzer must
target. For a compiler update that adds a new optimization (D1) whose code structure follows the
previously mentioned pattern, we can pick the body of the corresponding if-branch as a target
of the fuzzer. This means that the fuzzer aims to generate programs that trigger the newly added
optimization. For the removal of an optimization (D2), a fuzzer must generate a program that enters
the if-body before the compiler update. For a patch that modifies an existing optimization (D3), a
fuzzer must generate two types of programs: (1) a program that did not enter the if-body but enters
the body after the update, or (2) a program did enter the if-body but does not enter after the update.
Note that when an existing optimization is modified (D3), one may design a fuzzer that takes

two target locations in two different compilers. However, implementing such a fuzzer may require
a significant amount of effort because many existing well-written fuzzing frameworks work only
for a single program [17]. Instead, we can simply consider the patch as a new introduction of the
optimization (D1) and use a single-target directed fuzzer. This can generate programs not in the
kernel which does enter the if-body both before and after the update. Nonetheless, this design is
still useful in practice, as the optimization may contain a bug before the update unless formally
verified. The details of our criteria for selecting the target location will be explained in §4.4.

3 Overview

3.1 Motivating Examples

We illustrate our approach with a miscompilation bug in LLVM shown in Fig. 1. This optimization
was introduced on Sep 16, 2023. The remainder of the Euclidean division by a power of 2 is typically
optimized with a bitwise operation: 𝑋 % 2𝑁 =⇒ 𝑋 & (2𝑁 − 1) where 𝑋 is an integer and 𝑁 is a
positive integer. The optimization in Fig. 1 was to extend the basic optimization to the case when
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(a) (b)

Fig. 3. Incorrect (a) and correct (b) optimization patterns. Each node and edge represent matching statements
and their data dependencies, respectively. The numbers in circles represent the corresponding line numbers
in the source code. Underscores indicate “don’t-care”.

Fig. 4. System overview

the select instruction chooses between two values: (𝑋 % 2𝑁 ) < 0 ? (𝑋 % 2𝑁 ) + 2𝑁 : (𝑋 % 2𝑁 ).
When 𝑋 % 2𝑁 is negative, (𝑋 % 2𝑁 ) + 2𝑁 is equivalent to 𝑋 & (2𝑁 − 1).

However, the code in Fig. 1 does not correctly implement the intended optimization. Fig. 2 shows
an example of the miscompilation bug where the source and target programs produce different
results. When the optimization was added, two test cases checked its correctness but failed to detect
the bug. The bug was revealed seven months later and subsequently patched as shown in Fig. 1.
Compilers typically implement optimizations as rewrite rules that match a specific pattern in

the input program. This miscompilation bug is caused by a subtle error in the pattern matching.
Fig. 3(a) shows the incorrectly implemented pattern. Each number corresponds to the relevant line
in the source code that implements the pattern-matching process. For example, the function (Line 1)
is called when there exists a select instruction in the input program. The function then examines
whether the condition of the select statement is an icmp instruction (Line 6) that checks if a value
is less than zero (Line 7). If the input program satisfies all the conditions in the pattern, the compiler
applies the optimization (Line 15). However, the implementation misses a data dependency between
the icmp and srem instructions in the pattern. The correct pattern is shown in Fig. 3(b).
Notice that it is difficult to detect such miscompilation bugs because one should find a specific

input program that matches all the conditions. State-of-the-art fuzzing tools for compilers are not
effective in finding such bugs because they do not focus on a given target optimization. In our
experience, state-of-the-art fuzzing tools for LLVM, such as FLUX [28] and Alive-Mutate [13],
are not able to find this miscompilation bug within 1 hour.

3.2 Our approach: Optimuzz

We describe Optimuzz, a novel framework for finding miscompilation bugs. The system overview
is shown in Fig. 4. Optimuzz takes as input a target source location in the compiler which corre-
sponds to a specific optimization. The location can be either manually identified by developers or
heuristically inferred by Optimuzz. We observed that each compiler optimization rule is typically
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(a) Call graph of the LLVM optimization module (b) Control-flow graph of the foldSelectWithSRem

Fig. 5. Each node in the call graph (CG) represents a function within the optimizer, while each node in the
control flow graph (CFG) corresponds to a line number in the target function. In the CG, shaded nodes
indicate transitive callers of the target function. In the CFG, shaded nodes represent statements that can lead
to the target optimization point. Double-edged nodes denote the target function and the target optimization
point, respectively. Numbers at the top left of each node represent the distance to the target point.

implemented as an if-statement which contains the corresponding transformation like Line 15 in
Fig. 1. Based on this insight, one can easily identify the target location for an optimization rule.
Optimuzz can effectively generate input programs that trigger the miscompilation bug within

only 36 minutes. The core idea is to employ directed fuzzing to generate input programs and use
TV tools to detect miscompilation bugs. The rest of this section describes the key components of
Optimuzz each of which addresses a specific challenge in optimization-directed fuzzing.

3.2.1 Guided Search Strategy. We designed a guided search strategy to effectively generate input
programs that trigger the target optimization. The strategy consists of two components: selective
coverage feedback and distance metric.

Optimuzz receives coverage feedback exclusively from relevant parts to the target optimization.
Conventional grey-box fuzzers check the coverage of each execution and add new inputs to the seed
pool if they cover new program locations. However, in our context, this uniform coverage feedback
can promote unrelated inputs to the target optimization as seeds. This degrades the performance
of fuzzing as the fuzzer spends time mutating irrelevant seeds.
Optimuzz first analyzes the source code structure of the compiler and slices relevant parts to

the target optimization. We note that compiler optimizations have simple hierarchical structures.
Fig. 5(a) shows the call graph of the optimization module in LLVM. The main function of the opti-
mizer, optMain calls each optimization pass such as InstCombinePass. Each pass then visits all the
instructions in the input program and applies the corresponding optimization rules. Therefore, only
the shaded nodes in the call graph can potentially reach the target function foldSelectWithSRem
which contains the target optimization point. Similarly, the control-flow graph of the target function
is shown in Fig. 5(b). The original version of the function contains a sequence of three nested
conditional statements. Among them, only the shaded nodes can lead to the target optimization
point. We observe that this structural pattern is common in other optimization passes in LLVM
and even in other compilers like TurboFan, a JavaScript JIT compiler.

During the fuzzing phase, Optimuzz keeps mutants that discover new coverage along the sliced
paths as new seeds for further mutation. This process allows Optimuzz to focus on the relevant
conditions and discard seeds that are irrelevant to the target optimization.
Inspired other directed fuzzers [2, 11, 20, 21], Optimuzz also employs a similar distance metric

to guide the fuzzer toward the target optimization. The intuition is to measure the distance of
each input program to the target optimization. If one program has a smaller distance value to the
target than others, we expect that the program is more likely to trigger the target optimization.
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define i32 @f(i32 %x, i32 %y) {

%c = icmp slt i32 %x, 0

%s = select %c, i32 -1, i32 %y

ret i32 %s

}

(a) Initial seed

define i32 @f(i32 %x, i32 %y) {

%c = icmp slt i32 %x, 0

%t = add i32 %x, 16

%s = select %c, i32 %t, i32 %y

ret i32 %s

}

(b) Mutant 1

define i32 @f(i32 %x, i32 %y) {

%c = icmp slt i32 %x, 0

%r = srem i32 %y, %x

%t = add i32 %r, 16

%s = select %c, i32 %t, i32 %y

ret i32 %s

}

(c) Mutant 2

(d) Matched pattern by initial seed (e) Matched pattern by mutant 1 (f) Matched pattern by mutant 2

Fig. 6. Targeted mutation strategy of Optimuzz

Therefore, Optimuzz mutates those input programs more frequently than the others to generate
more promising seeds.
The distance of an input program is computed based on the distance of each node covered

by the input. The distance of a node in the target function is defined as the shortest length to
the target optimization point. Fig. 5(b) shows the distance of each node in the target function
foldSelectWithSRem. The distance of the target node 15 is defined as 0. The other distances are
computed based on the shortest length to the target point. For inter-procedural paths, we set the
weight of an edge between functions to 10 following the design of AFLGo [2]. Fig. 5(a) shows the
distance of the entry point of each function in the optimizer. In the end, the distance of an input
program is computed as the average distance to all nodes covered by the input.

Optimuzz then decides the number of mutants to generate from each seed based on its distance.
Therefore, this distance metric allows the fuzzer to generate more promising input to trigger the
target optimization at a higher rate.

3.2.2 Targeted Mutation Strategy. Optimuzz employs a targeted mutation strategy to effectively
generate programs that trigger the target optimization. The intuition is also based on the observation
of the typical pattern matching process in the compiler. We illustrate our strategy using the initial
seed program in Fig. 6(a), which is available in LLVM’s unit test suite [32]. Since this program
contains the select and icmp instructions, it partially matches the target optimization pattern as
shown in Fig. 6(d). This corresponds to the code coverage of Lines 1–7 in Fig. 1.

Initially, the fuzzer randomly transforms the seed program to derive mutant programs. Suppose
the fuzzer adds an add instruction to define the second operand of the select instruction as shown
in Fig. 6(b). This change results in a new matching pattern as shown in Fig. 6(e), which is closer
to the target optimization pattern. Optimuzz captures this progress by observing the new code
coverage of Line 10 in Fig. 1.

Now Optimuzz infers that the add instruction is a key component to satisfy more conditions for
the optimization under test and applies a targeted mutation strategy around the instruction. Notice
that compiler optimization patterns often involve a sequence of instructions that are data-dependent
as shown in the motivating example. Thus, Optimuzz focuses on the data dependencies of the add
instruction such as its operands and users. Especially, Optimuzz mutates the inferred relevant parts
more frequently than other instructions. This in turn results in efficiently generating programs
that match more sub-patterns for the target optimization like the mutant shown in Fig. 6(c).
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Algorithm 1: Optimuzz(C, 𝑡, Σ0,Ω), where C is the compiler under test, 𝑡 is the target
location, Σ0 is the initial seed pool, and Ω is the translation validator.

1 𝑆 ← Slice(C, 𝑡) // §4.2.1

2 Σ← SelectSeed(Σ0, 𝑆) // §4.2.3

3 ⟨Candidate, Bug⟩ ← ⟨∅,∅⟩
4 while not timeout do
5 ⟨𝑠, dist, 𝛿⟩ ← Choose(Σ)
6 𝑒 ← AssignEnergy(dist) // §4.2.4

7 for 𝑒 times do
8 ⟨𝑠′, 𝛿 ′⟩ ← Mutate(𝑠, 𝛿)
9 𝑐𝑜𝑣 ← MeasureCov(𝑆, 𝑠′)

10 dist′ ← ComputeDist(C, 𝑡, 𝑠′) // §4.2.2

11 if 𝑐𝑜𝑣 has any gain then
12 Σ← Σ ∪ {⟨𝑠′, dist′, 𝛿 ′⟩}
13 if 𝑠′ covers 𝑡 then
14 Candidate← Candidate ∪ {𝑠′}

15 for 𝑠 ∈ Candidate do
16 if Ω(𝑠, C(𝑠)) reports a miscompilation then
17 Bug ← Bug ∪ {𝑠} // Miscompilation bugs

18 return Bug

We demonstrate that this idea is generally applicable to various optimization rules (e.g., Inst-
Combine, GVN) and even to other compilers for different languages. In the evaluation, we show
that Optimuzz can effectively find miscompilation bugs in TurboFan, a JavaScript JIT compiler.

4 Framework

This section describes Optimuzz, a general optimization-directed fuzzing framework for compilers.
The overall process is described in Algorithm 1. Optimuzz is parameterized by the compiler under
test C with the target location 𝑡 , the initial seed pool Σ0, and the translation validator Ω. Given the
target location 𝑡 , Optimuzz first slices the compiler source code to extract the relevant code for the
target location (Line 1). Next, Optimuzz selects promising seeds from the initial seed pool Σ0 based
on their distance to the target location (Line 2). Then, Optimuzz iteratively selects a seed from the
pool and assigns energy to the seed based on the distance to the target location (Lines 5–6). The
energy determines the number of times the seed should be mutated (Line 8). For each mutation,
Optimuzz measures the code coverage of the mutated seed (Line 9) and computes the distance to
the target location (Line 10). If the mutated seed newly covers nodes in the sliced graph, Optimuzz
adds the seed to the pool (Line 12). If the mutated seed covers the target location, Optimuzz adds
the mutated seed to the candidate set (Line 14). All the seeds in the candidate set are then validated
by Ω (Line 17). Finally, Optimuzz returns the set of seeds that trigger miscompilations.
In the rest of this section, we describe the key components of Optimuzz, including the guided

search and targeted mutation. We also describe our deployment model for testing real-world
compilers and the criteria for selecting target locations in the compiler source code.

4.1 Preliminaries

We assume each function in the compiler is represented as a control-flow graph (CFG). The CFG of
function 𝑓 is a directed graph (C𝑓 ,→𝑓 ) that represents the control flow within the function where
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C𝑓 is the set of program points within the function and (→𝑓 ) ⊆ C𝑓 × C𝑓 is the set of control-flow
edges between program points. We denote the CFG of 𝑓 as 𝐶𝐹𝐺 𝑓 and a node in 𝐶𝐹𝐺 𝑓 as 𝑛𝑓 . We
define the inter-procedural CFG (ICFG) as a directed graph (C,→) that represents the control-flow
relations of the entire compiler where C =

⋃
𝑓 ∈F C𝑓 is the set of program points in the entire

compiler and (→) ⊆ C × C is the set of control flow edges between program points. We define a
call graph (CG) as a directed graph (F,→F) that represents the call relations between functions in
the compiler where F is the set of functions in the compiler and (→F) ⊆ F × F is the call relations.

4.2 Guided Search Strategy

This section describes how Optimuzz guides the fuzzing process to reach the target location. We
first slice the compiler source code to extract the relevant code for the target location (§4.2.1). The
extracted code is then instrumented to provide selective coverage feedback during the fuzzing
process and used to compute the distance of seeds to the target location (§4.2.2). In following
sections, we describe how Optimuzz selects seeds (§4.2.3) and assigns energy to seeds based on
their distance to the target location (§4.2.4).

4.2.1 Slicing. We first define the slice 𝑆𝐹 on the call graph which is the set of functions that are
relevant to the target location 𝑡 : 𝑆𝐹 = {𝑓 ∈ F | 𝑓 →∗F 𝑓𝑡 }. Each 𝑓𝑡 is the function that contains the
target location 𝑡 . Optimuzz considers transitive callers of the target function 𝑓𝑡 as relevant to the
target location. The intuition behind this design choice is based on the common structure of compiler
optimization processes as shown in Fig. 5(a). The optimization process is typically implemented as
a sequence of passes such as InstCombine or GVN. Each pass also consists of a sequence of rewrite
rules each of which is responsible for a specific optimization such as foldSelectWithSRem. One of
such rewrite rules is typically the target optimization that we aim to trigger. Our slicing strategy is
designed to capture such a hierarchical structure of compilers and guide the fuzzing process to
reach the target optimization efficiently without being deviated by irrelevant code.
One may wonder what happens if the target optimization is triggered only after another spe-

cific optimization is applied. In this case, our slicing strategy misses the dependencies between
optimizations. However, we observed that this is rare in practice. Even if such dependencies exist,
Optimuzz still has a chance to generate an input program that triggers both the preceding and
target optimizations, similar to conventional unguided fuzzers.
We define the slice 𝑆 on ICFG as the set of all relevant program points to the target location 𝑡 ,

formally, 𝑆 = {𝑐 𝑓 ∈ C | 𝑐 𝑓 →∗ 𝑡 ∧ 𝑓 ∈ 𝑆𝐹𝑡 }. Based on the same intuition as above, we exploit the
hierarchical structure of the compiler optimization process within a function as shown in Fig. 5(b).
In practice, each function in the optimizer (e.g., foldSelectWithSRem) corresponds to a specific
rewrite rule that is responsible for a specific optimization. Thus, this strategy effectively guides the
search to the target optimization within the function.

4.2.2 Seed Distance. Optimuzz computes seed distance to estimate how close a seed is to reach the
designated target locations in the compiler (Line 10). This distance is defined based on the nodes
covered by the seed within the slice. This metric helps prioritize seeds that are more likely to reach
the target efficiently during the fuzzing process.

First, we define the weight of an edge (𝑛1, 𝑛2) in ICFG based on the slice 𝑆 as follows:

Weight𝑆 (𝑛1, 𝑛2) =

1 if 𝑛1 → 𝑛2 is an intraprocedural edge ∧ 𝑛1, 𝑛2 ∈ 𝑆
10 if 𝑛1 → 𝑛2 is an interprocedural edge ∧ 𝑛1, 𝑛2 ∈ 𝑆
0 otherwise
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Similar to the previous work [2], we assign different weights to edges based on whether they are
intraprocedural or interprocedural. This differentiation ensures that paths crossing function bound-
aries are appropriately penalized, making intraprocedural exploration more favorable. However,
we assign weights to edges only if both the source and destination nodes are in the slice. Notice
that if an edge is not in the slice, the weight is set to 0, effectively excluding the edge from the
distance calculation.

The distance of a node 𝑛 to the target location 𝑡 is defined as the shortest length from 𝑛 to 𝑡 :

Dist𝑆,𝑡 (𝑛) =
∑︁

𝑛1→𝑛2∈𝑆𝑃
Weight𝑆 (𝑛1, 𝑛2)

where 𝑆𝑃 is the shortest path from 𝑛 to 𝑡 based on the weights assigned to the edges.
Finally we define the distance of a seed 𝑠 to a specific target 𝑡 . The distance is defined as the

average of the distances from all sliced nodes covered by the seed to the target location:

Dist𝑆,𝑡 (𝑠) =
1
|C𝑠 |

∑︁
𝑛∈C𝑠

Dist𝑆,𝑡 (𝑛)

where C𝑠 represents the set of sliced nodes in the ICFG that are covered by seed 𝑠 : (i.e., C𝑠 = C∩𝑆).
This average distance provides a quantitative measure of how well the seed is exploring regions
of the program close to the target. Seeds with smaller average distances are considered closer to
reaching the target and are therefore more valuable for guiding the fuzzing process.

4.2.3 Initial Seed Selection. Given an initial seed pool Σ0, Optimuzz selects seeds that are more
promising for reaching the target locations (Line 2) The seed selection is based on the distance of
each seed to the target locations. We select seeds that are the closest to the target locations, as these
are the most promising candidates for further exploration. This in turn increases the likelihood of
quickly reaching the target locations and triggering the desired optimizations.

4.2.4 Energy Assignment. Inspired by existing grey-box fuzzers [2–4, 20, 21], Optimuzz defines the
energy of a seed to guide the fuzzing process (Line 6). The energy of a seed determines the number
of mutants generated from it. Optimuzz assigns energy to seeds based on their distance from the
target locations. Based on this energy assignment, Optimuzz generates more mutants from seeds
that are closer to the target locations. This increases the likelihood of reaching the target locations
and triggering the desired optimizations.
The energy 𝐸 (𝑠) of a seed 𝑠 is defined using the distance to the target locations:

⌈ 10
1+Dist𝑆,𝑡 (𝑠 )

⌉
.

The formula is designed to ensure that (1) seeds closer to the target locations receive more energy,
and (2) the energy is bounded (between 1 to 10) to prevent it from becoming too large.

4.3 Targeted Mutation Strategy

This section describes a generic framework for the targeted mutation strategy. Our framework is
parameterized by a set of basic mutation operators. Among them, our targeted mutation strategy
is applied to mutation operators that preserve the control-flow of input programs. Note that this
strategy is generally applicable to different types of programming languages and compilers. In the
evaluation, we demonstrate the effectiveness of this strategy on LLVM and JavaScript programs.

In the rest of this section, we first formalize the representation of input programs (§4.3.1). Then,
we describe the basic mutation operators and a naive fuzzing strategy (§4.3.2). Finally, we present
our targeted mutation strategy (§4.3.3).

4.3.1 Input Program Representation. An input program 𝑃 is represented as a control-flow graph
(CFG) whose node is a program point. We assume that each program point is associated with a

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 172. Publication date: June 2025.



172:12 Jaeseong Kwon, Bongjun Jang, Juneyoung Lee, and Kihong Heo

(a) Def-Use graph (b) InsertCmd (c) ChangeExp

Fig. 7. Def-Use graph of and mutants of a program Y := 1; Z := X - 1; X := Y + Z; V := X + Y. The
red node is the last mutated node of the input program and the grey nodes are newly mutated nodes.

command. For brevity, we consider the following simple imperative language.
C → x := E E→ n | x | E Op E Op→ + | − | · · ·

4.3.2 Basic Mutation Operators. Optimuzz considers two basic mutation operators:
• InsertCmd(𝑐, 𝑥, 𝑐′, 𝑥 ′, E) inserts a new node 𝑐′ before node 𝑐 where 𝑐′ defines a new variable 𝑥 ′
with expression E and 𝑥 is replaced with 𝑥 ′ in 𝑐 .
• ChangeExp(𝑐, E) changes the expression in the command at node 𝑐 to expression E.
These operators cover a wide range of possible mutations that can be applied to input programs in
various languages. While the first operator inserts new nodes, it does not introduce conditionals or
loops, ensuring that the control flow remains unchanged.
A naive fuzzer would randomly apply these mutations to the input program. That is, it would

randomly select a node and apply one of the mutation operators with randomly generated expres-
sions. However, this approach does not effectively guide the fuzzing process toward the target
optimization because of the huge search space of possible mutations.

4.3.3 Targeted Mutation Strategy. Our targeted mutation strategy is based on the def-use graph
(DUG) of input programs. We use the standard def-use relations between commands as follows:

𝑐1
𝑥
↩−→ 𝑐2 ⇐⇒ variable 𝑥 is defined in 𝑐1 and used in 𝑐2.

Such def-use relations can be simply obtained by the SSA form of input programs derived by most
modern compilers. During the fuzzing process, Optimuzz keeps track of the last mutated node 𝛿 of
each mutant if the mutant covers new nodes in the slice (Line 8 and 12 in Algorithm 1). When the
mutant is chosen for further mutation, Optimuzz prioritizes the next node to mutate based on the
def-use relations between the lastly mutated node 𝛿 and the nodes in the mutant (Line 5 and 8).
Given the lastly mutated node 𝛿 of a mutant, Optimuzz instantiates the following mutation

operators based on the def-use relations of 𝛿 :

{InsertCmd(𝛿, 𝑥, 𝑐, 𝑥 ′, E) | 𝑥 ′ is a new variable, E is a randomly generated expression}

∪ {ChangeExp(𝑐, E) | 𝑐 𝑥
↩−→ 𝛿 , 𝐸 is a randomly generated expression}

∪ {ChangeExp(𝑐, E) | 𝛿 𝑥
↩−→ 𝑐 , 𝐸 is a randomly generated expression that uses 𝑥}

The first set of mutations inserts new nodes that define new variables and replace existing variables
in the last mutated node 𝛿 . The second set of mutations changes the expressions in the nodes that
define variables used in 𝛿 . Similarly, the third set of mutations changes the expressions in the nodes
that use variables defined in 𝛿 .

Fig. 7 illustrates an example of our targeted mutation strategy. Suppose the last mutated command
𝛿 of the input program is 𝑋 := 𝑌 + 𝑍 . Based on the def-use relations of 𝛿 , Optimuzz can generate a
mutant shown in Fig. 7(b) by using mutation InsertCmd(𝛿,𝑦, 𝑐,𝑦′, 2) where 𝑐 is the grey node. This
mutation inserts a new node 𝑌 ′ := 2 before node 𝛿 and replaces 𝑌 with 𝑌 ′ in 𝛿 . Similarly, Optimuzz
generates a mutant in Fig. 7(c) by using mutation ChangeExp(𝑐1, 2) where 𝑐1 is the grey node.
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1 Instruction *Optimize() {

2 + if (A)

3 + return Opt1(); // Target

4
5 if (C)

6 return Opt2();

7 return nullptr;

8 }

(a) New optimization added

1 Instruction *Optimize() {

2 if (A)

3 + if (B)

4 return nullptr;

5 if (C)

6 return Opt1(); // Target

7 return nullptr;

8 }

(b) Condition weakened

1 Instruction *Optimize() {

2 if (A)

3 + if (B)

4 return Opt1();// Target

5 if (C)

6 return Opt2(); // Target

7 return nullptr;

8 }

(c) Condition strengthened

Fig. 8. Target selection criteria

4.4 Deployment Model and Target Selection Criteria

We designed two deployment models for Optimuzz: continuous and batchmode. In continuousmode,
Optimuzz aims to validate recently updated optimizations. The goal of the fuzzer is to generate an
approximated kernel for each update. We also apply Optimuzz in batch mode where Optimuzz
aims to validate the whole set of optimizations. This batch mode is also meaningful in practice
unless the underlying optimizations are not formally verified. In the evaluation, we demonstrate
both modes of Optimuzz are effective in discovering new miscompilations in real-world compilers.
For continuous mode, we use simple yet effective criteria to select the target location in the

compiler code. The principle is that we select the body of an if-statement that handles more input
programs in the new compiler than the previous version. Intuitively, if an updated rewrite rule
handles more cases than before, we validate the correctness of the optimization for the new cases.
Our criteria are designed to cover three common update patterns of real-world compilers such

as LLVM and TurboFan. First, Fig. 8(a) illustrates an update that introduces a new rewrite rule.
In this case, all programs that match the condition A are optimized by the new optimization Opt1.
Among them, the programs that also match the condition C are not optimized by Opt2 anymore.
Thus, we set the target location to Line 3 for fuzzing. Second, we consider a condition loosening of
an existing rewrite rule as shown in Fig. 8(b). The optimization condition for Opt1 is updated from
¬𝐴 ∧𝐶 to ¬(𝐴 ∧ 𝐵) ∧𝐶 . Such changes may introduce an optimization opportunity that was not
available before. Thus, we set the target locations to the bodies of all subsequent if-statements in
the function such as Line 6 to validate the optimization with the loosened condition. If there is no
if-statement after the changed line, we set the target location to the return statement of the function.
Lastly, we consider a condition strengthening of an existing rewrite rule as shown in Fig. 8(c). The
optimization condition for Opt1 is updated from 𝐴 to 𝐴 ∧ 𝐵. This pattern is an exception to the
general principle as it reduces the optimization opportunities for Opt1. However, this pattern is still
meaningful in practice because it represents common bug fixes in rewrite rules. In this case, we set
the target location to Line 4. We also set the target location to Line 6 based on the second pattern.
Among the selected branches using the criteria, we only consider if-branches with interesting

return values. In LLVM and TurboFan, optimization functions typically return true or newly
allocated objects if the optimization is applied. On the other hand, they return false or nullptr
when the optimization is not applied. Therefore, Optimuzz filters out such non-interesting branches.

For batch mode, we basically select all branches as target locations if they return interesting
values. We further discard branches that immediately return the result of other helper functions
like if (Res = Helper()) return Res; because meaningful branches in Helper are already
targeted. If there are too many potential target locations, we can heuristically select a subset of
them such as the branches in more error-prone files according to the commit history.

5 Evaluation

We evaluate the performance of Optimuzz to answer the following research questions:
RQ1 How effective is Optimuzz in terms of reproducing target miscompilation bugs?
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RQ2 How do the guided search and targeted mutation affect the performance of Optimuzz?
RQ3 How do different distance metrics affect the performance of Optimuzz?
RQ4 How effective is Optimuzz in revealing unknown miscompilation bugs?

5.1 Experimental Setup

We instantiated Optimuzz for LLVM and TurboFan. LLVM is a popular compiler infrastructure for
various programming languages [24]. TurboFan is a JIT compiler for the V8 JavaScript engine [16].
All the experiments are performed on Linux machines with 512GB RAM and Intel Xeon 2.90GHz.

For LLVM, we implemented a custom fuzzer for LLVM IR using a set of simple mutation op-
erators such as instruction insertion, opcode mutation, operand mutation, and type mutation.
Our fuzzer handles middle-end optimizations, such as instcombine, slp-vectorization, and GVN.
We compare Optimuzz with two state-of-the-art compiler fuzzers for LLVM IR: FLUX [28] and
Alive-Mutate [13]. We chose those tools because they generate or mutate LLVM IR to detect
miscompilation bugs in LLVM. For initial seeds, we used the LLVM unit test suite published by
FLUX [29]. We employed Alive2 [57] for translation validation of LLVM IR.
For TurboFan, we implemented Optimuzz on top of Fuzzilli [17], a state-of-the-art fuzzer

for JavaScript. Note that the vanilla Fuzzilli failed to generate any input program to trigger the
target optimizations in our benchmark within 48 hours. Therefore, we configured Fuzzilli using
the settings published by TurboTV [23]. This restricts Fuzzilli to only generate programs with
semantics encoded in TurboTV and always generates functions for JIT compiling. Additionally, we
limited the constants used by the fuzzer and updated the probability of function arguments being
used within the function body. We used this configured Fuzzilli as our baseline and implemented
our strategies atop it. For initial seeds, we usedmjsunit [15] unit test suite used by V8. We employed
TurboTV for translation validation of TurboFan IR.

We evaluate the performance of Optimuzz using known miscompilation bugs in LLVM and
TurboFan. For LLVM, we collected all the miscompilation bugs over the past three years if they
can be detected by Alive2. As a result, we collected 24 miscompilation bugs, excluding crash bugs
and assertion errors which are out of the scope of Alive2. These bugs involve 7 optimization
passes including instcombine, vector-combine, and slp-vectorizer. For TurboFan, we used the
miscompilation bugs addressed in the TurboTV paper [23]. Among the 9 bugs in the paper, we
excluded 3 bugs because Fuzzilli was not compatible with the buggy versions of TurboFan.

5.2 RQ1. Reproducing Target Miscompilation Bugs

We evaluate the performance of Optimuzz in reproducing known miscompilation bugs in LLVM
and TurboFan. We compare Optimuzz with FLUX and Alive-Mutate for LLVM, and with Fuzzilli
for TurboFan. Due to the randomness of fuzzing, we measure the median time to trigger each target
bug over 10 repetitions with the time limits of 1 hour for LLVM and 6 hours for TurboFan. We then
validated the generated input programs using TV tools if they triggered the target optimizations.

Table 1 shows the effectiveness of Optimuzz in reproducing known miscompilation bugs of
LLVM. Optimuzz successfully reproduced 23 bugs while existing non-directed tools failed to repro-
duce most of them. FLUX did not reproduce any bugs more than four times. Alive-Mutate only
reproduced Issue 55291 in 53 minutes whereas Optimuzz detected the bug in only 14 minutes. These
results indicate that our directed approach is more effective in reproducing target miscompilation
bugs than FLUX and Alive-Mutate.
Although Optimuzz is effective in most cases, there is one failing case: Issue 84025. Fig. 9

illustrates this miscompilation bug. The function src contains bitwise operations ((𝑥 ≪ 32) | 65) ≪
64 that generate an i128 type value which is then converted to a vector-type value ⟨0, 0, 65, 𝑥⟩ of
length 4. LLVM optimizes them into an insertelement operation that locates the pre-calculated
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Table 1. Comparison of Optimuzz with baseline tools in reproducing knownmiscompilation bugs in LLVM.We
report the median time of reproductions over 10 repetitions in minutes. Dashes (-) indicate that the tool failed
to reproduce the bug for more than half of the repeated experiments. The numbers in parentheses indicate
the number of successful reproductions within the time limit. Column Pass represents the optimization
pass that caused the miscompilation such as InstCombine (IC), Reassociate (R), InstSimplify (IS), Correlated-
Propagation (CP), and Slp-Vectorization (SV).

Issue Pass FLUX Alive-
Mutate Optimuzz

55291 [33] IC - (0) 53 (6) 14 (10)
57357 [34] IC - (0) - (0) 16 (10)
57683 [35] R - (0) - (0) 14 (10)
58977 [36] IS - (0) - (0) 19 ( 9)
59279 [37] IC - (0) - (0) 15 (10)
59301 [38] CP - (4) - (2) 15 (10)
59836 [39] IC - (0) - (1) 15 (10)
61312 [40] IC - (0) - (0) 18 (10)
62401 [41] IC - (0) - (0) 20 (10)
62901 [42] CP - (0) - (0) 15 (10)
63327 [43] IC - (0) - (0) 14 (10)
64339 [44] IC - (0) - (0) 34 ( 7)

Issue Pass FLUX Alive-
Mutate Optimuzz

70470 [45] IC - (0) - (0) 24 ( 8)
72911 [46] IC - (0) - (1) 16 (10)
74890 [47] IC - (0) - (0) 14 (10)
75437 [48] SV - (0) - (0) 21 (10)
76441 [49] IC - (0) - (0) 56 ( 6)
84025 [50] IC - (0) - (0) - ( 0)
89390 [51] VC - (0) - (0) 14 (10)
89516 [52] IC - (0) - (0) 36 ( 7)
89669 [53] IC - (0) - (0) 24 ( 9)
91417 [54] R - (0) - (0) 14 (10)
98753 [55] SV - (0) - (0) 22 (10)
98838 [56] IC - (0) - (0) 24 (10)

define <4xi32> @src(i32 %X){

%a = zext i32 %X to i64

%b = shl i64 %a, 32

%c = or i64 %b, 65

%d = zext i64 %c to i128

%e = shl i128 %d, 64

%f = bitcast %e, <4xi32>

ret <4xi32> %f

}

; @src(1) = <0, 0, 65, 1>

(a)

define <4xi32> @tgt(i32 %X){

%a = insertelement <0,0,0,poison>, %X, 3

ret <4xi32> %a

}

; @tgt(1) = <0, 0, 0, 1>

(b)

define <2xi32> @mut(i32 %X){

%a = zext i32 %X to i64

%b = shl i64 %a, 32

%c = or i64 %b, %X

%d = bitcast %c, <2xi32>

ret <2xi32> %d

}

(c)

Fig. 9. Miscompilation bug in LLVM (Issue 84025). Program (a) is incorrectly optimized to program (b) by
LLVM. Optimuzz generates program (c) to trigger the optimization but fails to reproduce the bug.

values at specific indices of the vector. However, the optimization fails to locate the value 65 in the
vector as shown in Fig. 9(b). This bug can occur when the resulting vector is longer than 2.

Optimuzz is not effective in this case because the optimization rule depends on a long sequence
of multiple instructions with complex relationships among them. This rule is generally applicable
to any 𝑁 -bit integer-type value and generates an 𝑛-bit vector-type value with 𝑁 /𝑛 elements. To
derive a diverse set of such input programs, Optimuzz needs to not only mutate the length of the
resulting vector but also generate the preceding sequence of instructions each of which is consistent
with the vector. For example, Optimuzz was able to generate an input program that triggers this
optimization with a vector of length 2, as shown in Fig. 9(c). To trigger the bug, Optimuzz must
mutate the length of the vector to at least 3 and generate the preceding instructions (zext, shl
and or) that correctly populate the vector. However, our strategies failed to further generate input
programs with this complex constraint.

Next, we evaluate the effectiveness of Optimuzz in TurboFan. We also iterated 10 times for each
fuzzer and for each bug. Note that TurboFan is a JIT compiler for JavaScript, which makes the
fuzzing process more complex than that of LLVM. Thus, we set the time limit to 6 hours. Similar to
the LLVM experiments, we measured the median time to trigger the target bug.
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Table 2. Comparison of Optimuzz with the baseline tools in reproducing known miscompilation bugs in
TurboFan. Phase means the optimization phase where the bug exists.

Issue Phase Fuzzilli Optimuzz

1195650 [5] simplified-lowering - (0) - ( 0)
1198705 [6] simplified-lowering - (0) 3h 26m (10)
1199345 [7] simplified-lowering - (0) 3h 57m ( 9)
1200490 [8] simplified-lowering - (0) - ( 0)
1234764 [9] machine-operator-reducer - (0) 4h 35m ( 6)
1234770 [10] machine-operator-reducer - (0) 2h 39m (10)

Table 2 shows the experimental results. The baseline undirected fuzzer, Fuzzilli reproduced
no bugs within 6 hours, while Optimuzz successfully reproduced 4 bugs. Note that it is more
challenging to generate optimization-triggering input programs for TurboFan than for LLVM.
LLVM takes an input program in LLVM IR and performs same optimizations on the same IR. This
consistency allows the fuzzer to directly mutate the input program based on the coverage feedback.
However, TurboFan takes a JavaScript program as an input and translates it to a TurboFan IR
program. Furthermore, TurboFan IR consists of high-level (JS layer), middle-level (Simplified
layer), and low-level (Machine layer) IR. The compiler sequentially translates the input program
from a high-level IR to a low-level IR and performs different optimizations on each layer. This
complexity makes it difficult to directly check if the target optimization is triggered based on the
coverage feedback. Nevertheless, Optimuzz successfully reproduced the majority of bugs. This
demonstrates that Optimuzz is effective for complex compilers like TurboFan.
Lastly, we measure the success rate of our mutation operators of Optimuzz in LLVM to assess

the overall quality of the mutation. Overall, 72.99% of the generated programs are compilable over
10 repetitions for all bugs. In contrast to other differential testing tools for LLVM [66], Optimuzz is
not concerned about undefined behaviors (UB) in the generated programs. UB can lead to different
optimization results. While this divergence is correct according to the language specification, it
may produce false positives in conventional differential testing. On the other hand, we use a TV
tool to detect miscompilation bugs even if UBs are involved by checking refinement relations.
Therefore we accept every compilable program as a valid input program. For TurboFan, we used
the existing mutation operators of Fuzzilli. They are designed to always generate syntactically
correct JavaScript programs [17] and JavaScript does not have UBs like LLVM.

Overall, the results indicate that our ideas are effective and generally applicable to different types
of compilers. Existing non-directed fuzzers do not perform well in triggering target optimizations.
However, Optimuzz has successfully reproduced the majority of bugs and shown effectiveness
both in AOT (ahead-of-time) and JIT compilers of different languages, LLVM and TurboFan.

5.3 RQ2. Impact of Guided Search Strategy & Targeted Mutation Strategy

We evaluate the impact of the guided search strategy and targeted mutation strategy of Optimuzz
in reproducing known miscompilation bugs and the target hit ratio. We instantiated Optimuzz in 3
different configurations: Base, GS, and GS&TM. Base is a basic grey-box undirected fuzzer without
any strategy for directed fuzzing. GS employs the guided search strategy, and GS&TM combines
the guided search strategy with the targeted mutation strategy. We ran each configuration 10 times
for each bug and measured the median time to trigger the target bugs.

5.3.1 Impact on LLVM. Fig. 10(a) shows the impact of each strategy for LLVM. For each variant of
Optimuzz, we measured the median time to trigger the target bug. Base only reproduced 6 bugs
within the time limit. The guided search strategy significantly improved the performance, allowing
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Fig. 10. Impact of the guided search and targeted mutation strategies on LLVM.

GS to reproduce 22 bugs. For example, the guided search strategy is particularly effective when the
path to the target optimization points is long and optimization conditions are complex. In Issue
59279, there are four call points to the target function, and 13 conditions within the function must
be met for optimization. Base fails to reproduce the bug within the time limit, but GS succeeds in
only 15 minutes. The targeted mutation strategy further boosts performance, especially when the
input program being mutated is large. For Issue 76441, to reproduce the bug, an input program
must either contain 7 instructions, as stated in the previous bug report, or 4 instructions using
vector-type values with undef elements, as Optimuzz discovered. Base and GS failed to discover
the bug within the time limit but GS&TM succeeded. In total, combined with the targeted mutation
strategy, GS&TM reproduced 23 bugs.
GS&TM significantly improved the performance over GS for Issues 58977 and 98753. This

improvement shows that the targeted mutation strategy effectively guides the fuzzer when the
code slice is large. For those cases, the guided search strategy selected 1043 and 1062 basic blocks
as relevant program points to the target optimizations, respectively. However, the guided search
strategy selected only 255 basic blocks on average for each bug. Such large code slices can hinder
the effectiveness of fuzzing when only the selective coverage feedback is applied. This suggests
that both strategies work synergistically to enhance the performance of Optimuzz.

Next, Fig. 10(b) shows the average target hit ratio of each variant of Optimuzz achieved within
the time limit of one hour. GS and GS&TM significantly improved the target hit ratio for all bugs
compared to Base. This demonstrates that the guided search strategy effectively directs the fuzzer to
generate optimization-triggering input programs. Note that for many cases, the hit ratio of GS&TM
is not improved compared to GS even though the time to reproduce the bug is highly reduced
such as Issue 98753. This is because GS often mutates inessential parts of the input programs once
the target is reached. Such programs still trigger the target optimizations but do not diversify
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Fig. 11. Impact of guided search strategy and targeted
mutation strategy on TurboFan. Issues where all tools
failed to reproduce within the time limit are excluded.

Table 3. Comparison of Optimuzz configurations in
producing unique input programs that trigger Turbo-
Fan’s target optimizations within 6 hours.

Issue Base GS GS&TM

1195650 [5] 87 446 549
1198705 [6] 320 1,019 1,008
1199345 [7] 164 3,836 3,810
1200490 [8] 17 798 851
1234764 [9] 0 120 146
1234770 [10] 15 312 514

the optimization-triggering conditions. This result indicates that both strategies are essential to
effectively find an approximation of the kernel of a compiler update, as described in §2.

5.3.2 Impact on TurboFan. Fig. 11 shows the performance of Optimuzz with different strategies
for reproducing bugs. GS successfully reproduced 3 bugs while Base failed to reproduce any
bugs. GS&TM reproduced 4 bugs, including Issue 1234764 which GS failed to reproduce. The
optimization condition of the issue requires a specific structure with 4 or more instructions. The
targeted mutation strategy helps the fuzzer effectively select instructions in the input program that
need to be modified We observe that GS&TM did not consistently outperform GS. The main reason
is the gap between the input language (JavaScript) and the layered intermediate representation
(TurboFan IR) as described in §5.2. Nonetheless, the targeted mutation strategy is still effective
and significantly reduces the time spent by more than 1 hour for Issue 1199345 and 1234764.

Table 3 shows the average number of input programs that reach the target locations. Base was
able to generate only a few programs that reach the target optimization. On the other hand, GS and
GS&TM generate between 3 to 50 times more input programs that trigger the target optimization
compared to Base. Notably, while Optimuzz could not successfully reproduce Issues 1195650 and
1200490, it generated more than 500 input programs that reached the target optimizations.

The overall results indicate that our strategies effectively create approximated kernels for test-
ing target optimizations. Base without any strategies generates only a limited number of input
programs that trigger the target optimization, often resulting in incomplete bug reproduction. Our
strategies are generally effective for both LLVM and TurboFan. GS&TM, with all strategies applied,
demonstrates the best performance.

5.4 RQ3. Impact of Different Distance Metrics

This section evaluates the impact of our distance metric on the performance of Optimuzz. We
instantiated OptimuzzAFLGo which employs the distance metric of AFLGo [2], a widely used
distance metric in the fuzzing community. AFLGo computes the distance from a source basic block
𝑛 in function 𝑓𝑛 to the target basic block 𝑛∗ in 𝑓𝑛∗ in two stages: (1) intra-procedural path from 𝑛 to
a call site to a function 𝑔 that transitively calls 𝑓𝑛∗ , and (2) inter-procedural call chain from 𝑔 to
𝑓𝑛∗ . In contrast, our metric computes the shortest paths in the ICFG from the source to the target,
including all basic blocks and call edges along the paths. This makes our distance more sensitive to
all optimization conditions along the entire paths. We ran OptimuzzAFLGo for all 24 cases in the
LLVM benchmark and measured the time to trigger the target bugs.
Fig. 12 shows the experimental results for Issue 58977, 61312, 64339, and 98753. We focus on

these cases because OptimuzzAFLGo and Optimuzz assign significantly different distance values
to basic blocks in these cases. In other cases, they assign similar distance values to basic blocks
and thus no performance differences are observed. We observed that Optimuzz significantly
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Fig. 12. Impact of different distance metrics. The x-axis represents repetitions and the y-axis represents the
sorted time to reproduce the target bugs in ascending order.

Table 4. New bugs detected in each optimization pass of the LLVM latest version.

Mode InstCombine InstSimplify
Correlated-
Propatation

Slp-Vectorization GVN VectorCombine

Continuous 3 0 3 0 0 1
Batch 39 2 0 4 2 1

outperformed OptimuzzAFLGo for Issue 58977 and 98753. This is mainly because our distance metric
more effectively penalizes input programs that do not satisfy the target optimization conditions
than AFLGo. We observed that those optimizations require much longer sequences of instructions
to reach the target optimization. In such cases, Optimuzz assigns higher distance values to inputs
that do not reach the target optimization than OptimuzzAFLGo. Thus promising inputs that are
closer to the target optimization are more emphasized in Optimuzz.

Next, we do not observe significant performance differences in Issue 61312 and 64339. The main
reason is the poor quality of the initial seed programs. For those cases, the seed programs already
satisfy the target optimization conditions but contain many irrelevant instructions. This introduces
nonessential mutations that do not affect the target optimization. Therefore, the performance is less
sensitive to the guidance by the distance metric but rather to the impact of mutation operations.

The overall results demonstrate the effectiveness of our distance metric. Our distance metric can
effectively guide the fuzzer to generate target-reaching seeds. This is especially useful when the
target optimization requires a long sequence of instructions to reach the target point.

5.5 RQ4. Effectiveness of Revealing Unknown Miscompilation Bugs

We evaluate the effectiveness of Optimuzz in revealing unknown miscompilation bugs in the latest
version of LLVM.We instantiated Optimuzz in two deployment modes: continuous and batch, as de-
scribed in § 4.4. For continuous mode, we collected 41 commits of LLVM optimizer updates from the
past year. For batch mode, we collected all branches in files implementing optimization passes from
the latest version of LLVM. Specifically, we selected 7 optimization passes of instcombine, inst-
simplify, reassociate, correlated-propagation, gvn, slp-vectorizer, and vectorcombine.
For example, we examined 16 error-prone files according to the history including InstructionSim-
plify.cpp, InstCombineAndOrXor.cpp, InstCombineSelect.cpp, Reassociate.cpp, GVN.cpp,
VectorCombine.cpp, and SLPVectorizer.cpp. Overall, we specified 79 and 4,527 target locations
for continuous mode and batch mode, respectively. We set the time limit to 1 hour for each target.
Table 4 shows the overall results. In continuous mode, Optimuzz discovered 7 miscompilation

bugs. In batch mode, Optimuzz discovered 48 miscompilation. We reported all bugs to the LLVM
developers and 13 of them have been patched as of the writing of this paper.
Fig. 13 illustrates an example of a miscompilation bug discovered from a recent commit in

InstCombine. To test this commit, we targeted Line 12 as described in § 4.4, because the addition of
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1 Instruction *foldSelectIntoOp(SelectInst &S, Value *T, Value *F) {

2 ...

3 if (isa<FPMathOperator>(&SI) &&

4 + !computeKnownFPClass(FalseVal, FMF, fcNan, &SI).isKnownNeverNaN()) // Incomplete Update

5 return nullptr;

6 ...

7 NewSel->takeName(TVI);

8 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);

9 BO->copyIRFlags(TVI);

10 ++ if (isa<FPMathOperator>(&SI)) // Patch for a detected bug

11 ++ BO->andIRFlags(NewSel);

12 return BO; // Target Location

13 }
Fig. 13. Miscompilation bug in the latest LLVM and its patch

Line 4 changes the condition of the subsequent optimizations. The developer aimed to mitigate a
miscompilation issue within this optimization but was unable to fully address all miscompiling cases.
Within 1 hour, Optimuzz detected a new miscompilation bug in this optimization. We reported
this bug to the LLVM developers, and they added a patch at Line 10. Note that this bug was not
detected by Alive2 with 8 unit tests written by the developers at the time of the commit. On the
other hand, Optimuzz successfully discovered such edge cases.
The overall results demonstrate that Optimuzz is effective at discovering miscompilation bugs

in real-world compilers. Especially for LLVM, our results indicate that only 1 hour of fuzzing per
location provides sufficient testing coverage. This capability to automatically generate unit tests
for corner cases, which may be difficult to identify manually, offers a significant improvement in
reliability for maintaining a frequently updated compiler.

6 Discussion

Optimuzz’s effectiveness mainly relies on the underlying TV tools. For example, for LLVM, we use
Alive2 which supports bounded loop unrolling and is specialized for intraprocedural optimizations.
Thus, Optimuzz supports loop optimizations up to a configured loop unrolling bound and excludes
interprocedural optimizations for LLVM.
Our guidance and mutation strategies are motivated by common code patterns implementing

rewrite rules. Thus, Optimuzz is more effective for optimizations that are explicitly expressed as
rewrite rules such as LLVM’s InstCombine. However, we observe Optimuzz can also effectively
detect other types of optimizations. For example, Optimuzz discovered unknown bugs in GVN
and SLPVectorizer optimization passes in LLVM. Although such optimizations are not explicitly
expressed as rewrite rules in the source code, they also share the common structure of compiler
optimization passes. They check optimization conditions and apply transformations through nested
conditional statements. We observed such patterns across various compilers such as TurboFan,
GCC and recent deep-learning compilers. Thus, we conjecture that Optimuzz can be effective for a
wide range of optimizations across different compilers.

Currently, our targeted mutations only support mutations that preserve the control flow of input
programs. This enables us to design an effective mutation strategy based on the def-use relations of
the input program. To support more general mutations, we need to develop a more general targeted
mutation strategy. We leave this as future work.

7 Related Work

Our system effectively applies translation validation (TV) [58, 61] to check the correctness of com-
piler optimizations. TV ensures the correctness of a given compilation by checking the refinement
relation between the source and target programs. Recently, with significantly increasing interest,
several tools have been developed for real-world compilers such as Alive2 [57] for LLVM and
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TurboTV [23] for TurboFan. However, TV tools can only check the correctness of the observed
compilations. This in turn limits the effectiveness of these tools in proactively detecting bugs. Opti-
muzz addresses this limitation by employing directed fuzzing to generate programs that trigger the
target optimization. We demonstrated the effectiveness of this approach on real-world compilers,
uncovering many miscompilation bugs that were previously undetected by existing approaches.

Optimuzz provides an effective way to test compilers for miscompilation bugs. In recent years,
there has been a large body of work on compiler testing for widely used languages such as C/C++ [12,
13, 26, 28, 30, 31, 66] or JavaScript [1, 18, 19, 25, 59, 60, 63]. Most of these approaches employ
mutation-based fuzzing and observe erroneous behavior such as crashes. Since this may miss latent
bugs such as miscompilations, some approaches use differential testing that compares outputs of
programs compiled from different compilers [1, 63, 64]. However, it still requires specific inputs and
UB-free programs to be effective. To overcome this, recentmethods combine fuzzingwith TV [13, 28],
since TV can detect miscompilation bugs even for UB programs using refinement relations. However,
such simple combinations may not be effective in large compilers. We empirically demonstrated that
Optimuzz is more effective than existing approaches for detecting bugs in real-world compilers.
Recently researchers have proposed a new approach to test compilers using large language

models (LLMs) [65]. They proposed an LLM agent that analyzes compiler source codes and generates
input programs that trigger optimizations. While general and effective, LLMs are known to be
computationally expensive. They require specialized computing devices (e.g., GPUs) or cloud
services (e.g., GPT-4) to generate input programs. In contrast, Optimuzz provides a more efficient
solution by using lightweight coverage feedback and targeted mutation.

Optimuzz is orthogonal to generation-based compiler testing tools [27, 30, 62, 66]. They generate
new random programs from scratch or by using existing real-world programs. While these tools
aim to trigger various behaviors across the entire compiler, Optimuzz focuses on validating specific
target optimizations. Additionally, their generated programs can be integrated with Optimuzz to
enrich the initial seed pool for directed fuzzing.
Optimuzz is the first approach to apply directed fuzzing to validate compiler optimizations.

Directed fuzzing [2, 11, 20, 21] is an emerging technique that focuses on generating inputs that
cover a specific target location in a program. This approach is particularly effective for testing large
and complex programs with a small number of suspicious locations such as recently modified code
or potential errors identified by static analysis. All previous directed fuzzing approaches handle
inputs as sequences of bytes or simple formatted documents (e.g., XML). However, testing compiler
optimizers requires the fuzzer to generate input programs with specific optimization patterns.
Inspired by the success of directed fuzzing in other domains, we propose a novel directed fuzzing
approach for compiler optimizers. Our experiments show that the proposed strategies significantly
improve the effectiveness of fuzzing for compiler optimizations.

8 Conclusion

We proposed Optimuzz, a novel solution for continuously validating the correctness of compilers.
We designed strategies—guided search strategy and targeted mutation strategy—that enable the
fuzzer to effectively generate input programs for testing target optimizations. We applied these
ideas to LLVM and TurboFan, and demonstrated that Optimuzz could reproduce 23 more bugs
more efficiently than FLUX and Alive-Mutate, and detect four additional bugs faster than Fuzzilli.
Additionally, our experiments on the latest version of LLVM revealed 55 new miscompilation bugs.
These results highlight Optimuzz’s effectiveness in continuously validating compiler optimizations
and ensuring the detection of latent miscompilation bugs. We anticipate that this approach will
effectively validate the correctness of continuously updated compiler optimizations and provide a
practical solution for maintaining reliability in modern compilers.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 172. Publication date: June 2025.



172:22 Jaeseong Kwon, Bongjun Jang, Juneyoung Lee, and Kihong Heo

Data-Availability Statement

Optimuzz is available as an archived version on Zenodo [22]. This provides comprehensive in-
structions and scripts for reproducibility of experiments reported in the paper. The initial seed
programs for reproducing the experiments are also included. Furthermore, a recently updated
version of Optimuzz is open-sourced on our website (https://prosys.kaist.ac.kr/optimuzz). We
provide Optimuzz toolchain compatible with the latest version of LLVM to support reusability.
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