
Resource-aware Program Analysis
via Online Abstraction Coarsening

 Kihong Heo Hakjoo Oh Hongseok Yang

ICSE 2019

�1

Motivation

!2

Si
ze

 (L
O

C
)

0M

5M

10M

15M

20M

25M

30M

Linux Kernel Version

1.0 2.0 2.6.16 
(1st LTS)

2.6.34 
(5th LTS)

3.10 
(10th LTS)

4.1 
(15th LTS)

4.19 
(19th LTS)

X

*https://www.linuxcounter.net

• Deep semantic analysis for large software

Motivation

!2

Si
ze

 (L
O

C
)

0M

5M

10M

15M

20M

25M

30M

Linux Kernel Version

1.0 2.0 2.6.16 
(1st LTS)

2.6.34 
(5th LTS)

3.10 
(10th LTS)

4.1 
(15th LTS)

4.19 
(19th LTS)

X

*https://www.linuxcounter.net

• Deep semantic analysis for large software

Motivation

!2

Si
ze

 (L
O

C
)

0M

5M

10M

15M

20M

25M

30M

Linux Kernel Version

1.0 2.0 2.6.16 
(1st LTS)

2.6.34 
(5th LTS)

3.10 
(10th LTS)

4.1 
(15th LTS)

4.19 
(19th LTS)

X

*https://www.linuxcounter.net

• Deep semantic analysis for large software
!

Goal

!3

Goal
• Achieving maximum precision within a given resource budget

• e.g., within 128GB of memory

!3

Goal

!4

X-sensitivity (knob)

• Achieving maximum precision within a given resource budget

• e.g., within 128GB of memory

Goal

!4

X-sensitivity (knob)

Low Precision
Low Utilization

• Achieving maximum precision within a given resource budget

• e.g., within 128GB of memory

Goal

!4

X-sensitivity (knob)

Out of Resource

• Achieving maximum precision within a given resource budget

• e.g., within 128GB of memory

Goal

!4

X-sensitivity (knob)

Max. Precision
Max. Utilization

• Achieving maximum precision within a given resource budget

• e.g., within 128GB of memory

Challenges
• Hard to predict the behavior of analyzer in advance

• e.g., partially flow-sensitive interval analysis

!5

Challenges
• Hard to predict the behavior of analyzer in advance

• e.g., partially flow-sensitive interval analysis

!5

Sensitivity: 0%
emacs-26.0.91

(503KLOC)

Memory:
18GB

Challenges
• Hard to predict the behavior of analyzer in advance

• e.g., partially flow-sensitive interval analysis

!5

Sensitivity: 0%
emacs-26.0.91

(503KLOC)

Memory:
18GB

Sensitivity: 5%
emacs-26.0.91

(503KLOC)
<

Challenges
• Hard to predict the behavior of analyzer in advance

• e.g., partially flow-sensitive interval analysis

!5

Sensitivity: 0%
emacs-26.0.91

(503KLOC)

Memory:
18GB

Sensitivity: 5%
emacs-26.0.91

(503KLOC)

Memory:
> 128GB

<

<<

Challenges
• Hard to predict the behavior of analyzer in advance

• e.g., partially flow-sensitive interval analysis

!5

Sensitivity: 0%
emacs-26.0.91

(503KLOC)

Memory:
18GB

Sensitivity: 5%
emacs-26.0.91

(503KLOC)

Memory:
> 128GB

Sensitivity: 0%
vim60

(227KLOC)
<<

<<

Challenges
• Hard to predict the behavior of analyzer in advance

• e.g., partially flow-sensitive interval analysis

!5

Sensitivity: 0%
emacs-26.0.91

(503KLOC)

Memory:
18GB

Sensitivity: 5%
emacs-26.0.91

(503KLOC)

Memory:
> 128GB

Sensitivity: 0%
vim60

(227KLOC)

Memory:
51GB

<<

> <<

Our Approach
• Online abstraction coarsening by a learned controller

!6

Analysis Progress

Resource
Usage Precision

Budget

Our Approach
• Online abstraction coarsening by a learned controller

!6

Analysis Progress

Resource
Usage Precision

Budget

Low-sensitivity

Our Approach
• Online abstraction coarsening by a learned controller

!6

Analysis Progress

Resource
Usage Precision

Budget

Low-sensitivity

High-sensitivity

Our Approach
• Online abstraction coarsening by a learned controller

!6

Analysis Progress

Resource
Usage Precision

Budget

Low-sensitivity

High-sensitivity Our approach

Our Approach
• Online abstraction coarsening by a learned controller

!7

Analysis Progress

Resource
Usage Precision

Budget

Low-sensitivity

High-sensitivity Our approach

Offline Approach
(10% flow-sensitivity)

Online Approach

Our Approach
• Online abstraction coarsening by a learned controller

!7

Analysis Progress

Resource
Usage Precision

Budget

Low-sensitivity

High-sensitivity Our approach

Offline Approach
(10% flow-sensitivity)

Online Approach

• 3/8 run out of memory (128GB)

• 27% of buffer overrun alarms !

• 30% of null dereference alarms !

Our Approach
• Online abstraction coarsening by a learned controller

!7

Analysis Progress

Resource
Usage Precision

Budget

Low-sensitivity

High-sensitivity Our approach

Offline Approach
(10% flow-sensitivity)

Online Approach

• 3/8 run out of memory (128GB)

• 27% of buffer overrun alarms !

• 30% of null dereference alarms !

• 0/8 run out of memory (64 / 128GB)

• 28—32% of buffer overrun alarms !
• 33—41% of null dereference alarms !

Outline

• Motivation

• Learning Framework

• Experimental Results

• Conclusion

!8

Example

!9

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

Example

!10

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

• Partially flow-sensitive interval analysis (budget: 10 intervals)

Line Flow-Sensitive Abstract State
1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤, w = ⊤}
2 {x = [1,1], y = [0,0], z = [1,1], v = ⊤, w = ⊤}
3 {x = [1,1], y = [0,0], z = [2,2], v = ⊤, w = ⊤}
4 {x = [1,1], y = [1,1], z = [2,2], v = ⊤, w = ⊤}

12 Intervals3 Intervals

Example

!11

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

• Partially flow-sensitive interval analysis (budget: 10 intervals)

Line Flow-Sensitive Abstract State
1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤, w = ⊤}
2 {x = [1,1], y = [0,0], z = [1,1], v = ⊤, w = ⊤}
3 {x = [1,1], y = [0,0], z = [2,2], v = ⊤, w = ⊤}
4 {x = [1,1], y = [1,1], z = [2,2], v = ⊤, w = ⊤}

6 Intervals

Example

!12

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

• Partially flow-sensitive interval analysis (budget: 10 intervals)

Line Flow-Sensitive Abstract State
1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤, w = ⊤}
2 {x = [1,1], y = [0,0], z = [1,1], v = ⊤, w = ⊤}
3 {x = [1,1], y = [0,0], z = [2,2], v = ⊤, w = ⊤}
4 {x = [1,1], y = [1,1], z = [2,2], v = ⊤, w = ⊤}

12 Intervals

Example

!13

• Partially flow-sensitive interval analysis (budget: 10 intervals)

Line Flow-Insensitive Abstract State

* {x = [0,+∞], y = [0,+∞], z = [1,+∞], v = ⊤, w = ⊤}

3 Intervals

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

Online Abstraction
Coarsening

!14

Online Abstraction
Coarsening

!14

Input Result

Analyzer

Online Abstraction
Coarsening

!14

Input Transfer
Function Result

M0

Analyzer

Online Abstraction
Coarsening

!14

Input Transfer
Function Fixpoint? Result

M0 Mi

Analyzer

Online Abstraction
Coarsening

!14

Input Transfer
Function

Y
Fixpoint? Result

M0 Mi

Analyzer

Online Abstraction
Coarsening

!14

Model

Input Transfer
Function

Y

N

Fixpoint?

Controller

Result
M0 Mi

Mi

Analyzer

Online Abstraction
Coarsening

!14

Model

Input Transfer
Function

Y

N

Fixpoint?

Controller

Result
M0 Mi

Mi+1 Mi

Analyzer

Model

!15

Model
• Model M : Variable → [0, 1]

• Importance of each variable in terms of flow-sensitivity

• Pre-trained by an off-the-shelf method*

!15

*Learning a Strategy for Adapting a Program Analysis via Bayesian Optimisation, OOPSLA’15

Model
• Model M : Variable → [0, 1]

• Importance of each variable in terms of flow-sensitivity

• Pre-trained by an off-the-shelf method*

!15

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

*Learning a Strategy for Adapting a Program Analysis via Bayesian Optimisation, OOPSLA’15

Model
• Model M : Variable → [0, 1]

• Importance of each variable in terms of flow-sensitivity

• Pre-trained by an off-the-shelf method*

!15

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

> M(w)

*Learning a Strategy for Adapting a Program Analysis via Bayesian Optimisation, OOPSLA’15

Model
• Model M : Variable → [0, 1]

• Importance of each variable in terms of flow-sensitivity

• Pre-trained by an off-the-shelf method*

!15

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

M(x) > > M(w)

*Learning a Strategy for Adapting a Program Analysis via Bayesian Optimisation, OOPSLA’15

Model
• Model M : Variable → [0, 1]

• Importance of each variable in terms of flow-sensitivity

• Pre-trained by an off-the-shelf method*

!15

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

M(x) > > M(w)M(y) > M(z) > M(v)

*Learning a Strategy for Adapting a Program Analysis via Bayesian Optimisation, OOPSLA’15

Controller

!16

Controller
• Controller 𝛑 : F → Pr(A) where A = {0, …, 100}

!16

Controller
• Controller 𝛑 : F → Pr(A) where A = {0, …, 100}

!16

• Input: a feature vector describing current status

• e.g., memory usage, analysis progress, etc

Controller
• Controller 𝛑 : F → Pr(A) where A = {0, …, 100}

!16

• Input: a feature vector describing current status

• e.g., memory usage, analysis progress, etc

• Output: probability distribution on % of variables  
that should be treated flow-insensitively

Controller

!17

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

Model: M(x) > M(y) > M(z) > M(v) > M(w)

Controller

!18

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

6 Intervals

Model: M(x) > M(y) > M(z) > M(v) > M(w)

Line Flow-Sensitive Abstract State

1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤, w = ⊤}

2 {x = [1,1], y = [0,0], z = [1,1], v = ⊤, w = ⊤}

Controller

!19

Line Flow-Sensitive Flow-Insensitive

1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤}
{w = ⊤}

2 {x = [1,1], y = [0,0], z = [1,1], v = ⊤}

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

6 Intervals

Model: M(x) > M(y) > M(z) > M(v) > M(w)

Controller

!20

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

9 Intervals

Model: M(x) > M(y) > M(z) > M(v) > M(w)

Line Flow-Sensitive Flow-Insensitive

1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤}

{w = ⊤}2 {x = [1,1], y = [0,0], z = [1,1], v = ⊤}

3 {x = [1,1], y = [0,0], z = [2,2], v = ⊤}

Controller

!21

Line Flow-Sensitive Flow-Insensitive

1 {x = [0,0], y = [0,0]}
{z = [1,+∞],

v = ⊤, w = ⊤}2 {x = [1,+∞], y = [0,0]}

3 {x = [1,+∞], y = [0,0]}

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

6 Intervals

Model: M(x) > M(y) > M(z) > M(v) > M(w)

Controller

!22

Line Flow-Sensitive Flow-Insensitive

1 {x = [0,0], y = [0,0]}

{z = [1,+∞],

v = ⊤, w = ⊤}

2 {x = [1,+∞], y = [0,0]}

3 {x = [1,+∞], y = [0,0]}

4 {x = [1,+∞], y = [1,+∞]}

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

8 Intervals

Model: M(x) > M(y) > M(z) > M(v) > M(w)

Learning Controller
• Controller 𝛑 : F → Pr(A) where A = {0, …, 100}

!23

• Input: a feature vector describing the current status

• Output: probability distribution on % of variables  
that should be treated flow-insensitively

Learning Controller
• Controller 𝛑 : F → Pr(A) where A = {0, …, 100}

!23

• Value function Q : F × A → [0, 1]

• Score to every pair of feature vector and action

• Input: a feature vector describing the current status

• Output: probability distribution on % of variables  
that should be treated flow-insensitively

Learning Controller
• Controller 𝛑 : F → Pr(A) where A = {0, …, 100}

!23

• Value function Q : F × A → [0, 1]

• Score to every pair of feature vector and action

Q(f, a)
∑a′�∈A Q(f, a′�)• 𝛑Q(f)(a) =

• Input: a feature vector describing the current status

• Output: probability distribution on % of variables  
that should be treated flow-insensitively

Value Function

!24

Q : F × A → [0, 1]

Value Function
• Feature abstraction function 𝜶 : State → F where F = [0, 1]4

1. The inverse of memory budget

2. Current memory consumption divided by the total budget

3. Current lattice position divided by the lattice height

4. Current workset size divided by the total workset size

!24

Q : F × A → [0, 1]

Value Function
• Feature abstraction function 𝜶 : State → F where F = [0, 1]4

1. The inverse of memory budget

2. Current memory consumption divided by the total budget

3. Current lattice position divided by the lattice height

4. Current workset size divided by the total workset size

!24

• Reward : [0, 1]

• relative #alarms w.r.t. flow-sensitive and insensitive result

• 0 if #alarms == #flow-insensitive alarms

• 1 if #alarms == #flow-sensitive alarms

Q : F × A → [0, 1]

Learning Algorithm

!25

Learning Algorithm

!25

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

Learning Algorithm

!25

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

1. Initialize 𝛑 with a random policy

Learning Algorithm

!26

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

2. Run the analysis with 𝛑

Learning Algorithm

!26

s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

2. Run the analysis with 𝛑

Learning Algorithm

!27

s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

3. Collect all state-action pairs and the reward

D1 = {(<𝜶(s0), a0>, 0.7), (<𝜶(s1), a1>, 0.7), (<𝜶(s2), a2>, 0.7)}

*For brevity heuristics are omitted

Learning Algorithm

!28

s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

4. Learn Q using D1 with a supervised learning algorithm

Q = SupervisedLearning(D1)

Learning Algorithm

!29

s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

5. Refine 𝛑 using Q

Q(f, a)
∑a′�∈A Q(f, a′�)

𝛑Q(f)(a) =

Learning Algorithm

!30

s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

6. Run the analysis with refined 𝛑

Learning Algorithm

!30

s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

6. Run the analysis with refined 𝛑

s4 R = 1.0

a3

Learning Algorithm

!31

D2 = D1 ∪ {(<𝜶(s0), a0>, 1.0), (<𝜶(s4), a4>, 1.0)}

s0 s1 s2 s3 R = 0.7

s4 R = 1.0

a0 a1 a2

a3

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

7. Accumulate data

Learning Algorithm

!32

s0 s1 s2 s3 R = 0.7

s4 R = 1.0

a0 a1 a2

a3

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

8. Refine Q using D2 with a supervised learning algorithm

Q = SupervisedLearning(D2)

Learning Algorithm

!33

s0 s1 s2 s3 R = 0.7

s4 R = 1.0

a0 a1 a2

a3

• SARSA-style algorithm from reinforcement learning

• from a training set (i.e., batch mode)

• with common heuristics (discounted reward, e-greedy search)

…

Outline

• Motivation

• Learning Framework

• Experimental Results

• Conclusion

!34

Experimental Setup

!35

Experimental Setup
• Training with 10 small programs (15—80KLOC)

• with small memory limits

!35

Experimental Setup
• Training with 10 small programs (15—80KLOC)

• with small memory limits

!35

• Test with 8 large programs (129—503KLOC)

• 64 / 128 GB memory limits

Experimental Setup
• Training with 10 small programs (15—80KLOC)

• with small memory limits

!35

• Test with 8 large programs (129—503KLOC)

• 64 / 128 GB memory limits

• Measure buffer-overrun and null-dereference alarms

Experimental Setup
• Training with 10 small programs (15—80KLOC)

• with small memory limits

!35

• Test with 8 large programs (129—503KLOC)

• 64 / 128 GB memory limits

• Measure buffer-overrun and null-dereference alarms

• Trigger controller when the OCaml runtime allocates new
memory chunks

Experimental Setup
• Training with 10 small programs (15—80KLOC)

• with small memory limits

!35

• Test with 8 large programs (129—503KLOC)

• 64 / 128 GB memory limits

• Measure buffer-overrun and null-dereference alarms

• Trigger controller when the OCaml runtime allocates new
memory chunks

• Compared to partially flow-sensitive analysis

• 10% of variables chosen offline with 128GB of memory

Memory Utilization

!36

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Offline Online (64GB) Online (128GB)
OOM OOM OOM

Memory Utilization

!36

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Offline Online (64GB) Online (128GB)

21% on average
(out of memory for 3 programs)

OOM OOM OOM

Memory Utilization

!37

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Offline Online (64GB) Online (128GB)

79% on average

OOM OOM OOM

Memory Utilization

!38

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Offline Online (64GB) Online (128GB)

61% on average

OOM OOM OOM

Analysis Precision

!39

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Flow-insensitive Offline Online (64GB) Online (128GB)

Buffer Overrun Alarms

OOM OOM OOM

Analysis Precision

!40

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Flow-insensitive Offline Online (64GB) Online (128GB)

Buffer Overrun Alarms

OOM OOM OOM

Analysis Precision

!40

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Flow-insensitive Offline Online (64GB) Online (128GB)

Buffer Overrun Alarms

OOM OOM OOM

Reduced 27% of alarms
(out of memory for 3 programs)

Analysis Precision

!41

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Flow-insensitive Offline Online (64GB) Online (128GB)

Buffer Overrun Alarms

OOM OOM OOM

28% on average

Analysis Precision

!42

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Flow-insensitive Offline Online (64GB) Online (128GB)

Buffer Overrun Alarms

OOM OOM OOM

32% on average

Analysis Precision

!43

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Flow-insensitive Offline Online (64GB) Online (128GB)
OOM OOM OOM

Null Dereference Alarms

Analysis Precision

!43

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Flow-insensitive Offline Online (64GB) Online (128GB)
OOM OOM OOM

Null Dereference Alarms

Reduced 30% of alarms
(out of memory for 3 programs)

Analysis Precision

!44

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Flow-insensitive Offline Online (64GB) Online (128GB)
OOM OOM OOM

Null Dereference Alarms

33% on average

Analysis Precision

!45

0

25

50

75

100

sendmail redis nethack git vim python R emacs

Flow-insensitive Offline Online (64GB) Online (128GB)
OOM OOM OOM

Null Dereference Alarms

41% on average

Conclusion

!46

Conclusion
• A systematic framework for resource-aware program analysis

• online abstraction coarsening

• reinforcement learning algorithm for learning controller

• attention to physical resource as well as logical behavior

!46

Conclusion
• A systematic framework for resource-aware program analysis

• online abstraction coarsening

• reinforcement learning algorithm for learning controller

• attention to physical resource as well as logical behavior

Max. Precision
Max. Utilization

!46

