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Analysis Progress

Resource 
Usage Precision

Budget

Low-sensitivity

High-sensitivity Our approach

Offline Approach 
(10% flow-sensitivity)

Online Approach 

• 3/8 run out of memory (128GB)


• 27% of buffer overrun alarms !

• 30% of null dereference alarms !

• 0/8 run out of memory (64 / 128GB)


• 28—32% of buffer overrun alarms !
• 33—41% of null dereference alarms !
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• Motivation


• Learning Framework 

• Experimental Results


• Conclusion
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1: x = 0; y = 0; z = 1; v = input(); w = input(); 
2: x = z; 
3: z = z + 1; 
4: y = x; 
5: assert(y > 0);    // Query 1 (hold) 
6: assert(z > 0);    // Query 2 (hold) 
7: assert(v == w);   // Query 3 (may fail)

• Partially flow-sensitive interval analysis (budget: 10 intervals)

Line Flow-Sensitive Abstract State
1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤, w = ⊤}
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4 {x = [1,1], y = [1,1], z = [2,2], v = ⊤, w = ⊤}

12 Intervals3 Intervals
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Line Flow-Sensitive Abstract State
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• Partially flow-sensitive interval analysis (budget: 10 intervals)

Line Flow-Insensitive Abstract State

* {x = [0,+∞], y = [0,+∞], z = [1,+∞], v = ⊤, w = ⊤}

3 Intervals

1: x = 0; y = 0; z = 1; v = input(); w = input(); 
2: x = z; 
3: z = z + 1; 
4: y = x; 
5: assert(y > 0);    // Query 1 (hold) 
6: assert(z > 0);    // Query 2 (hold) 
7: assert(v == w);   // Query 3 (may fail)
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• Importance of each variable in terms of flow-sensitivity


• Pre-trained by an off-the-shelf method*
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1: x = 0; y = 0; z = 1; v = input(); w = input(); 
2: x = z; 
3: z = z + 1; 
4: y = x; 
5: assert(y > 0);    // Query 1 (hold) 
6: assert(z > 0);    // Query 2 (hold) 
7: assert(v == w);   // Query 3 (may fail)

M(x) > > M(w)M(y) > M(z) > M(v)

*Learning a Strategy for Adapting a Program Analysis via Bayesian Optimisation, OOPSLA’15
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• Input: a feature vector describing current status


• e.g., memory usage, analysis progress, etc

• Output: probability distribution on % of variables  
that should be treated flow-insensitively
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• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 
2: x = z; 
3: z = z + 1; 
4: y = x; 
5: assert(y > 0);    // Query 1 (hold) 
6: assert(z > 0);    // Query 2 (hold) 
7: assert(v == w);   // Query 3 (may fail)

Model:   M(x) > M(y) > M(z) > M(v) > M(w)
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• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 
2: x = z; 
3: z = z + 1; 
4: y = x; 
5: assert(y > 0);    // Query 1 (hold) 
6: assert(z > 0);    // Query 2 (hold) 
7: assert(v == w);   // Query 3 (may fail)

6 Intervals

Model:   M(x) > M(y) > M(z) > M(v) > M(w)

Line Flow-Sensitive Abstract State

1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤, w = ⊤}

2 {x = [1,1], y = [0,0], z = [1,1], v = ⊤, w = ⊤}
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Line Flow-Sensitive Flow-Insensitive

1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤}
{w = ⊤}

2 {x = [1,1], y = [0,0], z = [1,1], v = ⊤}

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 
2: x = z; 
3: z = z + 1; 
4: y = x; 
5: assert(y > 0);    // Query 1 (hold) 
6: assert(z > 0);    // Query 2 (hold) 
7: assert(v == w);   // Query 3 (may fail)

6 Intervals

Model:   M(x) > M(y) > M(z) > M(v) > M(w)
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• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 
2: x = z; 
3: z = z + 1; 
4: y = x; 
5: assert(y > 0);    // Query 1 (hold) 
6: assert(z > 0);    // Query 2 (hold) 
7: assert(v == w);   // Query 3 (may fail)

9 Intervals

Model:   M(x) > M(y) > M(z) > M(v) > M(w)

Line Flow-Sensitive Flow-Insensitive

1 {x = [0,0], y = [0,0], z = [1,1], v = ⊤}

{w = ⊤}2 {x = [1,1], y = [0,0], z = [1,1], v = ⊤}

3 {x = [1,1], y = [0,0], z = [2,2], v = ⊤}
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Line Flow-Sensitive Flow-Insensitive

1 {x = [0,0], y = [0,0]}
{z = [1,+∞],


v = ⊤, w = ⊤}2 {x = [1,+∞], y = [0,0]}

3 {x = [1,+∞], y = [0,0]}

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 
2: x = z; 
3: z = z + 1; 
4: y = x; 
5: assert(y > 0);    // Query 1 (hold) 
6: assert(z > 0);    // Query 2 (hold) 
7: assert(v == w);   // Query 3 (may fail)

6 Intervals

Model:   M(x) > M(y) > M(z) > M(v) > M(w)
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Line Flow-Sensitive Flow-Insensitive

1 {x = [0,0], y = [0,0]}

{z = [1,+∞],

v = ⊤, w = ⊤}

2 {x = [1,+∞], y = [0,0]}

3 {x = [1,+∞], y = [0,0]}

4 {x = [1,+∞], y = [1,+∞]}

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 
2: x = z; 
3: z = z + 1; 
4: y = x; 
5: assert(y > 0);    // Query 1 (hold) 
6: assert(z > 0);    // Query 2 (hold) 
7: assert(v == w);   // Query 3 (may fail)

8 Intervals

Model:   M(x) > M(y) > M(z) > M(v) > M(w)
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Learning Controller
• Controller 𝛑 : F → Pr(A) where A = {0, …, 100}
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• Value function Q : F × A → [0, 1]


• Score to every pair of feature vector and action

Q( f, a)
∑a′�∈A Q( f, a′�)• 𝛑Q(f)(a) =  

• Input: a feature vector describing the current status

• Output: probability distribution on % of variables  
that should be treated flow-insensitively
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Value Function
• Feature abstraction function 𝜶 : State → F where F = [0, 1]4


1. The inverse of memory budget

2. Current memory consumption divided by the total budget

3. Current lattice position divided by the lattice height

4. Current workset size divided by the total workset size 
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• Feature abstraction function 𝜶 : State → F where F = [0, 1]4


1. The inverse of memory budget

2. Current memory consumption divided by the total budget

3. Current lattice position divided by the lattice height

4. Current workset size divided by the total workset size 
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• Reward : [0, 1]


• relative #alarms w.r.t. flow-sensitive and insensitive result


• 0 if #alarms == #flow-insensitive alarms


• 1 if #alarms == #flow-sensitive alarms

Q : F × A → [0, 1]
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• SARSA-style algorithm from reinforcement learning


• from a training set (i.e., batch mode)


• with common heuristics (discounted reward, e-greedy search)

1. Initialize 𝛑 with a random policy
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s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning


• from a training set (i.e., batch mode)


• with common heuristics (discounted reward, e-greedy search)

3. Collect all state-action pairs and the reward

D1 = {(<𝜶(s0), a0>, 0.7), (<𝜶(s1), a1>, 0.7), (<𝜶(s2), a2>, 0.7)}

*For brevity heuristics are omitted
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s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning


• from a training set (i.e., batch mode)


• with common heuristics (discounted reward, e-greedy search)

4. Learn Q using D1 with a supervised learning algorithm

Q = SupervisedLearning(D1)
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s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning


• from a training set (i.e., batch mode)


• with common heuristics (discounted reward, e-greedy search)

5. Refine 𝛑 using Q

Q( f, a)
∑a′�∈A Q( f, a′�)

𝛑Q(f)(a) =  
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s0 s1 s2 s3 R = 0.7
a0 a1 a2

• SARSA-style algorithm from reinforcement learning


• from a training set (i.e., batch mode)


• with common heuristics (discounted reward, e-greedy search)

6. Run the analysis with refined 𝛑

s4 R = 1.0

a3
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D2 = D1 ∪ {(<𝜶(s0), a0>, 1.0), (<𝜶(s4), a4>, 1.0)}

s0 s1 s2 s3 R = 0.7

s4 R = 1.0

a0 a1 a2

a3

• SARSA-style algorithm from reinforcement learning


• from a training set (i.e., batch mode)


• with common heuristics (discounted reward, e-greedy search)

7. Accumulate data
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s0 s1 s2 s3 R = 0.7

s4 R = 1.0

a0 a1 a2

a3

• SARSA-style algorithm from reinforcement learning


• from a training set (i.e., batch mode)


• with common heuristics (discounted reward, e-greedy search)

8. Refine Q using D2 with a supervised learning algorithm

Q = SupervisedLearning(D2)
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s0 s1 s2 s3 R = 0.7

s4 R = 1.0

a0 a1 a2

a3

• SARSA-style algorithm from reinforcement learning


• from a training set (i.e., batch mode)


• with common heuristics (discounted reward, e-greedy search)

…
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• Motivation


• Learning Framework


• Experimental Results 

• Conclusion
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Experimental Setup
• Training with 10 small programs (15—80KLOC)


• with small memory limits

!35

• Test with 8 large programs (129—503KLOC)


• 64 / 128 GB memory limits

• Measure buffer-overrun and null-dereference alarms

• Trigger controller when the OCaml runtime allocates new 
memory chunks

• Compared to partially flow-sensitive analysis

• 10% of variables chosen offline with 128GB of memory
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