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정적�분석

• 자동으로�SW�의�동작을�미리�어림잡는�일반적인�방법�

• 목적에�따라�다양하게�요약
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도전�과제

• 성능의�세가지�축:�모두�달성하는�것은�이론적으로�불가능
soundness

scalability precision
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• 전통적인�분류,

무결성�검증용 오류�검출용
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코드�최적화용



목표

• Sound,�precise�yet�scalable�static�analysis
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목표

• Sound,�precise�yet�scalable�static�analysis
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(2007)�



목표

• Sound,�precise�yet�scalable�static�analysis
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General Sparse Analysis 
Framework  

[PLDI’12,TOPLAS’14] (2014)�



목표

• Sound,�precise�yet�scalable�static�analysis

7

soundness

scalability precision

Selective X-sensitive Analysis  
- by Impact Pre-analysis 
[PLDI’14,TOPLAS’16,SPE’17] 

- by Machine Learning  
[SAS’16]

(2016)�



실험�결과

• 선별적으로�변수�관계를�추적하는�분석 
(Selective�Relational�Analysis)
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실험�결과

• 선별적으로�문맥을�구분하는�분석�  
(Selective�Context-sensitive�Analysis)
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목표

• Sound,�precise�yet�scalable�static�analysis
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(2017)�

Selectively Unsound Analysis 
[ICSE’17]



실험�결과

• 선별적으로�안전한�분석�(loop,�lib�call�안전성�조절)
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핵심�기술

• 효율적인�정적�분석을�위해�적절한�요약을�찾기�

• 정적�분석�이론�기반�(예비�분석)�/�통계�기반�(기계�학습)�

• 대상:�변수�관계,�문맥�(context),�흐름�(flow),� 
안전성�(soundness),�등
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핵심�기술

• 효율적인�정적�분석을�위해�적절한�요약을�찾기
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핵심�기술

• 효율적인�정적�분석을�위해�적절한�요약을�찾기
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핵심�기술

• 효율적인�정적�분석을�위해�적절한�요약을�찾기
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-�Selective�Context-Sensitivity�Guided�by�Impact�Pre-Analysis,�PLDI’14�
-�Selective�X-Sensitive�Analysis�Guided�by�Impact�Pre-Analysis,�TOPLAS’16�
-�Selective�Conjunction�of�Context-sensitivity�and�Octagon�Domain�toward�Scalable�and�Precise�Global�Static�Analysis,�SPE’17
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scalability precision

예비�분석을�이용하여��
선별적으로�정확하게�정적�분석�
(Selective�X-sensitive�Analysis�by�Impact�Pre-analysis)



선별적으로�정확한�분석

• 특정�X�를�필요한�곳에서만�정확하게�분석하는�방법�

• X�:�문맥,�관계�등�정확성을�높이지만�비싼�기술
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선별적으로�정확한�분석
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error states

부정확한�분석 정확한�분석



관계�분석

• 변수�사이의�관계를�특정한�형태로�분석�

• e.g.)�octagon�analysis�:�
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a b c i

a 0 ∞ ∞ ∞

b ∞ 0 ∞ ∞

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

{a, b, c, i}

contexts that represent the “difference” between 

i

and 0. Intu-
itively, if 0 is a suffix of 

i

, i.e., 
i

= 

0
i

· 0, the partial context
for 

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of 

i

as 
i

 0 = 

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.

Example 6. From the path p1 in Example 5, the collection of 
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.

*Consider x-y ≤ c only,  
for simplicity

(±x)� (±y)  c
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b - a ≤ 0

a - b ≤ 0
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In summary, for the path in (9), collecting contexts
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Then, the final context selector K is the union of K
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’s:

Definition 10 (K, Context Selector). Let (c
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) be a query. The
context selector K 2 F! }(C⇤
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) for our selective analysis is:

K(f) = E(f) [
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(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq
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where MAK vq
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K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA
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This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.

• 변수�사이의�관계를�특정한�형태로�분석�

• e.g.)�octagon�analysis�:�(±x)� (±y)  c
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p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.
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a b c i

a 0 0 ∞ ∞

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

i - b ≤ -1

{a, b, c, i}

contexts that represent the “difference” between 

i

and 0. Intu-
itively, if 0 is a suffix of 

i

, i.e., 
i

= 

0
i

· 0, the partial context
for 

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of 

i

as 
i

 0 = 

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.

Example 6. From the path p1 in Example 5, the collection of 
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.
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a b c i

a 0 0 ∞ -1

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

i - a ≤ -1

{a, b, c, i}

contexts that represent the “difference” between 

i

and 0. Intu-
itively, if 0 is a suffix of 

i

, i.e., 
i

= 

0
i

· 0, the partial context
for 

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of 

i

as 
i

 0 = 

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.

Example 6. From the path p1 in Example 5, the collection of 
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.
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c ∞ ∞ 0 ∞
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i - c ≤ ∞

{a, b, c, i}

contexts that represent the “difference” between 

i

and 0. Intu-
itively, if 0 is a suffix of 

i

, i.e., 
i

= 

0
i

· 0, the partial context
for 

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of 

i

as 
i

 0 = 

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.

Example 6. From the path p1 in Example 5, the collection of 
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.
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a b c i

a 0 0 ∞ -1

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

{a, b, c, i}

contexts that represent the “difference” between 

i

and 0. Intu-
itively, if 0 is a suffix of 

i

, i.e., 
i

= 

0
i

· 0, the partial context
for 

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of 

i

as 
i

 0 = 

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.

Example 6. From the path p1 in Example 5, the collection of 
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.

c�가�필요한가?

• 변수�사이의�관계를�특정한�형태로�분석�

• e.g.)�octagon�analysis�:�(±x)� (±y)  c



선별적�관계�분석

• 선별적으로�변수사이의�관계를�분석�

• 같은�묶음�(cluster)�안에�있는�변수�사이�관계만

25

a b i

a 0 0 -1

b 0 0 -1

i ∞ ∞ 0

-∞ ≤ c ≤ +∞+

{a,b,i} {c}
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i

and 0. Intu-
itively, if 0 is a suffix of 
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, i.e., 
i

= 

0
i

· 0, the partial context
for 

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of 

i

as 
i

 0 = 

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.

Example 6. From the path p1 in Example 5, the collection of 
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.
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1: int a = b; 
2: int c = input(); 
3: for (i = 0; i < b; i ++) { 
4:   assert (i < a); 
5:   assert (i < c); 
6: } 
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a b c i

a ★ ★ T ★

b ★ ★ T ★

c T T ★ T
i T T T ★
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(b,a) (i,a)(i,b) (c,a) …

{a,�b,�i}

a = b

c = input()

i = 0

Q: i < a?

i++

i < b

1: int a = b; 
2: int c = input(); 
3: for (i = 0; i < b; i ++) { 
4:   assert (i < a); 
5:   assert (i < c); 
6: } 
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Program LOC #Variable #Query Syntactic Packing Approach Our Selective Relational Analysis Comparison
proven time mem pack proven pre main total mem pack Precision Time

calculator-1.0 298 197 10 2 0.3 63 18 (7.3) 10 0.1 0.1 0.2 52 3 ( 3.6) +8 -33.3%
spell-1.0 2,213 531 16 1 4.8 109 119 (7.7) 16 1.7 0.7 2.4 63 6 (11.0) +15 -50.0%
barcode-0.96 4,460 2,002 37 16 11.8 221 276 (8.1) 37 12.2 18.3 30.5 100 12 (25.0) +21 158.5%
httptunnel-3.3 6,174 1,908 28 16 26.0 220 454 (7.0) 26 10.8 4.5 15.3 105 8 ( 5.8) +10 -41.2%
bc-1.06 13,093 2,194 10 2 247.1 945 606 (7.8) 9 82.3 35.0 117.3 212 4 ( 4.0) +7 -52.5%
tar-1.17 20,258 5,332 17 7 1,043.2 1,311 1,259 (7.5) 17 598.5 63.3 661.8 384 7 ( 3.9) +10 -36.6%
less-382 23,822 4,482 13 0 3,031.5 1,439 1,017 (6.3) 13 2,253.2 596.2 2,849.4 955 8 ( 6.3) +13 -6.0%
a2ps-4.14 64,590 16,531 11 0 29,479.3 2,304 2,608 (7.8) 11 2,223.5 518.2 2,741.7 909 6 ( 6.7) +11 -90.7%
Total 135,008 33,177 142 44 33,840.3 6,611 139 5,182.3 1,236.3 6,418.6 2,780 +95 -81.0%

Table 2. Performance comparison between an octagon analysis with an existing syntactic packing strategy and our selective relational analysis. #Variable
denotes the number of variables (abstract locations) in the program. #Query denotes the number of buffer-overrun queries whose proofs require relational
reasoning. proven reports the number of queries that are proven by each octagon analysis. mem reports the peak memory consumption in megabytes. Each
X (Y) in column pack represents the number of non-singleton packs (X) and the average size (Y) of the packs used in each relational analysis. Precision and
Time shows additionally proven queries and time consumption by our selective relational analysis compared to the syntactic packing approach.

queries, we compute the exhaustive solution with an abstraction
tailored to the queries (our analysis is run once for the entire set of
queries). Both approach can complement each other.

In a high level, our approach suggests a novel technique for
analysis-parameter inference [8, 11, 21]. There are many param-
eters to tune in static analysis, to improve either precision or scala-
bility. The problem is how to find a set of minimal, or at least suf-
ficient, parameters for the goal. Liang et al. [8] use machine learn-
ing to find a minimal context-sensitivity for given queries. Guided
by the number of queries each analysis run has proven, the ma-
chine learning algorithm infers a minimal k value for each function.
However, they study the minimal abstraction itself and provide no
practical solutions for selective context-sensitivity. Zhang et al. [21]
present a technique for finding the optimum abstraction, a cheapest
abstraction that proves the query, but it is applicable only to dis-
junctive analyses. Naik et al. [11] use a dynamic analysis to select
an appropriate parameter for a given query, while we use a static
pre-analysis for parameter selection.

Our selective octagon analysis is similar to the existing octagon
analyses (such as [3, 10, 12]) in that they use variable packing and
and hence they are partially relational. However, while we selec-
tively construct variable packs that likely benefit the final analysis
precision, existing analyses blindly construct variable packs based
on syntactic heuristics [10, 12] or program dependencies [3].

9. Conclusion
We proposed a method of designing a selective “X-sensitive” anal-
ysis, where the selection is guided by an impact pre-analysis. We
followed this approach, presented two program analyses that se-
lectively apply precision-improving techniques, and demonstrated
their effectiveness with experiments in a realistic setting. The first
was a selective context-sensitive analysis that receives guidance
from an impact pre-analysis. Our experiments with realistic bench-
marks showed that the method reduces the number of false alarms
of a context-insensitive interval analysis by 24.4%, while increas-
ing the analysis cost by 27.8%. The second example was a selective
relational analysis with octagons using the same idea of impact pre-
analysis, and our experiments showed that our selective octagon
analysis proves 88 more queries than the existing one based on the
syntactic variable packing and reduces the analysis cost by 81%.
We believe that our approach can be used for developing other se-
lective analyses as well, e.g., selective flow-sensitive analysis, se-
lective loop-unrolling, etc.
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   int h(n) { return n; } 
   void f(s) { 
1:   p = h(s); 
     assert(p > 1);    // Q1 
2:   q = h(input()); 

  assert(q > 1);    // Q2 
   } 
3: void g() { f(8); } 
   void main(){ 
4:   f(4); 
5:   g(); 
6:   g(); 
   }
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6

3
h1

4

g

f

f

h

h

h

h

h
3

1

1

2

2

2

[4,�4]

[-∞,+∞]

[8,�8]

[8,�8]

[-∞,+∞]

[-∞,+∞]

모든�문맥�구분�분석

main

5,

4

g

f

f

h

h

h
3

1

1

2

[4,�4]

[8,�8]

[-∞,+∞]

2

선별적�문맥�구분�분석



예)�문맥을�위한�예비�분석

31

main g f5

6

3
h1

4

g

f

f

h

h

h

h

h
3

1

1

2

2

2

[4,�4]

[-∞,+∞]

[8,�8]

[8,�8]

[-∞,+∞]

[-∞,+∞]

main g f5

6

3
h1

4

g

f

f

h

h

h

h

h
3

1

1

2

2

2

★

T

★

★

T

T

T 모든�인터벌

음이�아닌�인터벌�(e.g.�[1,5],�[0,�∞])

모든�문맥�구분�분석 예비�분석



실험�결과

• 선별적�문맥�구분�분석�

• 거짓경보�24%�감소,�분석�시간�28%�증가�

• cf.)�3-CFA�:�같은�정확도,�분석시간�1300%�증가

32

Program LOC Proc Context-Insensitive Our Selective Context-Sensitive Analysis Alarm Overhead
#alarm time #alarm pre main total #selected call-sites ; reduction pre main

spell-1.0 2,213 31 58 0.6 30 0.1 0.8 0.9 25 / 124 ( 20.2 %) 3 48.3% 16.7% 33.3%
bc-1.06 13,093 134 606 14.0 483 1.9 14.3 16.2 29 / 777 ( 3.7 %) 2 20.3% 13.6% 2.1%
tar-1.17 20,258 222 940 42.1 799 5.4 41.8 47.2 51 / 1213 ( 4.2 %) 3 15.0% 12.8% �0.7%
less-382 23,822 382 654 123.0 562 3.3 163.1 166.4 51 / 1,522 ( 3.4 %) 4 14.1% 2.7% 32.6%
sed-4.0.8 26,807 294 1,325 107.5 1,238 7.4 110.2 117.6 25 / 868 ( 2.9 %) 3 6.6% 6.9% 2.5%
make-3.76 27,304 191 1,500 84.4 1,028 7.1 99.1 106.2 67 / 1,050 ( 6.4 %) 3 31.5% 8.4% 17.4%
grep-2.5 31,495 153 735 12.1 653 2.4 13.5 15.9 33 / 530 ( 6.2 %) 3 11.2% 19.8% 11.6%
wget-1.9 35,018 434 1,307 69.0 942 12.5 69.6 82.1 79 / 1,973 ( 4.0 %) 5 27.9% 18.1% 0.9%
a2ps-4.14 64,590 980 3,682 118.1 2,121 29.5 148.2 177.7 237 / 2,450 ( 9.7 %) 9 42.4% 25.0% 25.5%
bison-2.5 101,807 1,427 1,894 136.3 1,742 34.6 138.8 173.4 173 / 2,038 ( 8.5 %) 4 8.0% 25.4% 1.8%
Total 346,407 4,248 12,701 707.1 9,598 104.2 799.4 903.6 770 / 12,545 ( 6.1 %) 24.4% 14.7% 13.1%

Table 1. Performance comparison between context-insensitive analysis and our selective context-sensitive analysis. LOC reports lines of code before pre-
processing. Proc shows the number of procedures in the programs. #alarm reports the number of buffer-overrun alarms raised by the analyses. pre reports the
time spent for running the pre-analysis (including query selection and building context selector) and main reports the time spent by the main analysis of our
approach. Each entry a/b (c%) in column #selected call-sites means that, among b call-sites in the program, a call-sites are selected for context-sensitivity
by our pre-analysis and the selection ratio is c%. ; reports the maximum call-depth prescribed by the pre-analysis. Overhead: pre shows the pre-analysis
overhead and main reports the cost increase in the main analysis due to increased context-sensitivity, compared to the context-insensitive analysis.

ysis. We measured the analysis precision by the number of buffer
accesses (#alarm) that cannot be proven safe by the analysis.

The results show that our method leads to a cost-effective im-
provement of the analysis precision. In total, the context-insensitive
interval analysis points out 12,701 buffer accesses as potential
buffer-overrun errors (there is a total of 83,776 buffer accesses in
the 10 programs). Our technique reduces the number down to 9,598
(24.4% reduction). In doing so, our technique increases the total
analysis time from 707.1s to 903.6s (27.8% increase).

We observed that passing numeric values through long call
chains is not uncommon in the interval analysis of C programs.
Our pre-analysis is able to prescribe such a long call sequence as
context-sensitive targets. For instance, in a2ps-4.14, among 1682
call sequences prescribed by our pre-analysis, 488 call sequences
were of length longer than or equal to 3.

According to our experience, the k-callstrings approach does
not scale when it is used with the interval abstract domain for ana-
lyzing C programs. The 2- and 3-callstrings approaches did not stop
after 30 minutes for programs over 10KLOC. Even the 1-callstrings
approach was slow and did not scale over 40KLOC. For instance,
the 3-callstrings approach succeeded to analyze spell-1.0 in
11.9s (with 30 alarms reported), it did not stop for bc-1.06.

Selective Octagon Analysis We have implemented our selective
method on top of the octagon-analysis version of our baseline
analyzer. We compare the performance of our selective analysis
with an existing octagon analysis based on the syntactic variable
packing [10, 12]. The syntactic packing approach relates variables
together if they are involved in the same syntactic block [10]. We
limited the maximum pack size by 10 in the syntactic packing
strategy, since otherwise the analysis did not scale.

Table 2 shows our benchmark programs. Note that, although a
relational analysis is a key to proving important numerical proper-
ties, it is useful only for specific target programs and queries [3, 10].
Thus, we first identified a set of benchmark programs and their
buffer-overrun queries whose proofs require relational information,
and compared the performance of the two analyses on these pro-
grams and queries. Column #Query shows the number of relational
queries that we consider in our experiments. In the experiments, we
manually in-lined the functions that are involved in the proofs of
the target queries, so that our selective relational analysis and the
syntactic packing approach are run under context-sensitivity.

The results show that our selective octagon analysis has a com-
petitive precision-cost balance. Among 135 queries in total, our
analysis is able to prove 132 (97.8%) queries in 3,632.7s. On the
other hand, the octagon analysis with syntactic packing proved 44
(32.6%) queries in 33,840.3s; the syntactic packing heuristic often

fails to prescribe variable relationships necessary to prove queries.
Our analysis is even faster than the counterpart in most cases be-
cause it selectively turns on relational analysis.

One thing to note is that running our pre-analysis is feasible
in practice even though it is fully relational. The bottlenecks of a
fully relational octagon analysis are the memory costs for repre-
senting 2|Var| ⇥ 2|Var| matrices and the expensive strong closure
operation [10] whose time complexity is cubic in the number of
variables. Thanks to the simplicity of the abstract domain (F or
>), we can reduce the memory cost using a sparse representation
for the matrices. For the closure operation, we use Dijkstra’s al-
gorithm and compute the shortest-path closure [10] instead of the
strong closure. In our experiments, using the shortest-path closure
made no difference in the pre-analysis precision.

8. Related Work
Most of the previous context-sensitive analysis techniques assign
contexts to calls in a uniform manner. The k-callstring approach
(or k-CFA) [15, 16] and its flexible variants [5], k-object sensitiv-
ity [9], and type sensitivity [17] are such cases. All these techniques
generate calling contexts according to a single fixed policy and do
not explore how to tune their parameters (for example, different
k values at each call site) for target queries. The hybrid context-
sensitivity [7], which employs multiple policies of assigning con-
texts in a single analysis, still does not tailor those policies to the
program to analyze. There are also other approaches to context-
sensitivity based on function summaries like [14], but here we do
not discuss them as it is by itself a challenge to design a summary-
based analysis with abstract domains of infinite height.

While refinement-based analyses [4, 13, 19] are similar to our
approach (in that they use a “pre-analysis” to adjust the main analy-
sis precision), there is a fundamental difference in their techniques.
Refinement-based approaches (e.g., client-driven analysis [4]) start
with an imprecise analysis and refines the abstraction in response
to client queries. On the other hand, our approach starts with a
pre-analysis that estimates the impact of the most precise main
analysis. As a result, our approach provides a precision guarantee,
which does not hold in the refinement-based techniques. Further-
more, the principle behind our approach is general; it is applicable
to a range of static analyses (such as interval and octagon anal-
yses) with various precision axes (such as context-sensitivity and
relational analysis). Existing refinement-based analyses have been
special for pointer analyses [4, 13, 19].

Our approach is orthogonal to demand-driven analyses [6, 19,
20]. While demand-driven analyses aim to reduce analysis costs
by computing only the partial solution necessary to answer given
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contexts that represent the “difference” between 

i

and 0. Intu-
itively, if 0 is a suffix of 

i

, i.e., 
i

= 

0
i

· 0, the partial context
for 

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of 

i

as 
i

 0 = 

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.

Example 6. From the path p1 in Example 5, the collection of 
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.

a b c i

a 0 0 ∞ -1

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

Octagon Analysis

⊕ : {(a,b), (a,i), (b,a) …}  
⊖ : {(a,c), (b,c), (c,a) …}
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• 예비�분석�결과로부터�자동�생성�[PLDI’14]�

• 모든�관계�분석,�본�분석보다는�적은�비용
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a b c i

a ★ ★ T ★

b ★ ★ T ★

c T T ★ T

i T T T ★

�(F) = Z
�(>) = Z [ {+1}

a b c i

a 0 0 ∞ -1

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

contexts that represent the “difference” between 

i

and 0. Intu-
itively, if 0 is a suffix of 

i

, i.e., 
i

= 

0
i

· 0, the partial context
for 

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of 

i

as 
i

 0 = 

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.

Example 6. From the path p1 in Example 5, the collection of 
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.

Octagon Analysis Impact Pre-analysis

⊕ : {(a,b), (a,i), (b,a) …}  
⊖ : {(a,c), (b,c), (c,a) …}



큰�그림

• 빅데이터로부터 필요한 변수 관계를 선별하는 전략 학습
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특질�(feature)

• 프로그램 P 안에 있는 변수 쌍 (x, y) 에 관한 30가지 특질
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(Positive situations for Octagon) 
- x=y+k�or�y=x+k 
- x<=y+k�or�y<=x+k 
- x=malloc(y)�or�y=malloc(x) 
- x[y] or y[x] 
- …�

(Negative situations for Octagon) 
- x=cy or�y=cx (c�!=�1)�
- x=yz�or�y=xz 
- x=y/z�or�y=x/z 
- …

(General syntactic features) 
- x or y is a field 
- x and y represent sizes of arrays 
- x or y is the size of a const string 
- x or y is a global variable 
- … 

(General semantic features) 
- x or y has a finite interval 
- x or y is a local var in a recursive function 
- x, y are not accessed in the same function  
- …



특질�(feature)

• 특질의 중요도 (Gini Index 로 측정)

• 부정 & 보편 > 긍정 & 특수

44 *Top 5 most important features

(Positive situations for Octagon) 
- x=y+k�or�y=x+k 
- x<=y+k�or�y<=x+k 
- x=malloc(y)�or�y=malloc(x) 
- x[y] or y[x] 
- …�

(Negative situations for Octagon) 
- x=cy or�y=cx (c�!=�1)�
- x=yz�or�y=xz 
- x=y/z�or�y=x/z 
- …

(General syntactic features) 
- x or y is a field 
- x and y represent sizes of arrays 
- x or y is the size of a const string 
- x or y is a global variable 
- … 

(General semantic features) 
- x or y has a finite interval 
- x or y is a local var in a recursive function 
- x, y are not accessed in the same function  
- …



분류기�(Classifier)

• 변수�쌍�분류기�����������������������������������������학습�

• 잘�알려진�ML�알고리즘�(decision�tree)�

• 선형�모델보다�훨씬�풍부한�표현력�

• c.f.)�logistic�regression�으로�학습:�10~12x�느림
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C : Var ⇥ Var ! {�, }



큰�그림

• 빅데이터로부터 필요한 변수 관계를 선별하는 전략 학습
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변수�묶음�전략

• ⊕-표�변수쌍을�같은�묶음에�

• transitive�관계도�자연스럽게�포함
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c

i

b

a

contexts that represent the “difference” between 

i

and 0. Intu-
itively, if 0 is a suffix of 

i

, i.e., 
i

= 

0
i

· 0, the partial context
for 

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of 

i

as 
i

 0 = 

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.

Example 6. From the path p1 in Example 5, the collection of 
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.

⊕

⊕

C(x,y)
(a,b) ⊕
(a,i) ⊖
(b,i) ⊕
(a,c) ⊖
… …



실험�결과

• Effectiveness�(leave-one-out�cross�validation)
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Program LOC #Abs.Loc. # Alarms Time(s)
Itv Impt ML Itv Impt ML

brutefir 103 54 4 0 0 0 0 0
consol 
calculator

298 165 20 10 10 0 0 0
id3 512 527 15 6 6 0 0 1
spell 2,213 450 20 8 17 0 1 1
mp3rename 2,466 332 33 3 3 0 1 1
irmp3 3,797 523 2 0 0 1 2 3
barcode 4,460 1,738 235 215 215 2 9 6
httptunnel 6,174 1,622 52 29 27 3 35 5
e2ps 6,222 1,437 119 58 58 3 6 3
bc 13,093 1,891 371 364 364 14 252 16
less 23,822 3,682 625 620 625 83 2,354 87
bison 56,361 14,610 1,988 1,955 1,955 137 4,827 237
pies 66,196 9,472 795 785 785 49 14,942 95
icecast-
server

68,564 6,183 239 232 232 51 109 107
raptor 76,378 8,889 2,156 2,148 2,148 242 17,844 345
dico 84,333 4,349 402 396 396 38 156 51
lsh 110,898 18,880 330 325 325 33 139 251
Total 7,406 7,154 7,166 656 40,677 1,207



실험�결과

• Effectiveness�(leave-one-out�cross�validation)

-252 -240

Program LOC #Abs.Loc. # Alarms Time(s)
Itv Impt ML Itv Impt ML

brutefir 103 54 4 0 0 0 0 0
consol 
calculator

298 165 20 10 10 0 0 0
id3 512 527 15 6 6 0 0 1
spell 2,213 450 20 8 17 0 1 1
mp3rename 2,466 332 33 3 3 0 1 1
irmp3 3,797 523 2 0 0 1 2 3
barcode 4,460 1,738 235 215 215 2 9 6
httptunnel 6,174 1,622 52 29 27 3 35 5
e2ps 6,222 1,437 119 58 58 3 6 3
bc 13,093 1,891 371 364 364 14 252 16
less 23,822 3,682 625 620 625 83 2,354 87
bison 56,361 14,610 1,988 1,955 1,955 137 4,827 237
pies 66,196 9,472 795 785 785 49 14,942 95
icecast-
server

68,564 6,183 239 232 232 51 109 107
raptor 76,378 8,889 2,156 2,148 2,148 242 17,844 345
dico 84,333 4,349 402 396 396 38 156 51
lsh 110,898 18,880 330 325 325 33 139 251
Total 7,406 7,154 7,166 656 40,677 1,207

49



실험�결과

• Effectiveness�(leave-one-out�cross�validation)

Program LOC #Abs.Loc. # Alarms Time(s)
Itv Impt ML Itv Impt ML

brutefir 103 54 4 0 0 0 0 0
consol 
calculator

298 165 20 10 10 0 0 0
id3 512 527 15 6 6 0 0 1
spell 2,213 450 20 8 17 0 1 1
mp3rename 2,466 332 33 3 3 0 1 1
irmp3 3,797 523 2 0 0 1 2 3
barcode 4,460 1,738 235 215 215 2 9 6
httptunnel 6,174 1,622 52 29 27 3 35 5
e2ps 6,222 1,437 119 58 58 3 6 3
bc 13,093 1,891 371 364 364 14 252 16
less 23,822 3,682 625 620 625 83 2,354 87
bison 56,361 14,610 1,988 1,955 1,955 137 4,827 237
pies 66,196 9,472 795 785 785 49 14,942 95
icecast-
server

68,564 6,183 239 232 232 51 109 107
raptor 76,378 8,889 2,156 2,148 2,148 242 17,844 345
dico 84,333 4,349 402 396 396 38 156 51
lsh 110,898 18,880 330 325 325 33 139 251
Total 7,406 7,154 7,166 656 40,677 1,207
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실험�결과

• Effectiveness�(leave-one-out�cross�validation)

51 x62 x2

Program LOC #Abs.Loc. # Alarms Time(s)
Itv Impt ML Itv Impt ML

brutefir 103 54 4 0 0 0 0 0
consol 
calculator

298 165 20 10 10 0 0 0
id3 512 527 15 6 6 0 0 1
spell 2,213 450 20 8 17 0 1 1
mp3rename 2,466 332 33 3 3 0 1 1
irmp3 3,797 523 2 0 0 1 2 3
barcode 4,460 1,738 235 215 215 2 9 6
httptunnel 6,174 1,622 52 29 27 3 35 5
e2ps 6,222 1,437 119 58 58 3 6 3
bc 13,093 1,891 371 364 364 14 252 16
less 23,822 3,682 625 620 625 83 2,354 87
bison 56,361 14,610 1,988 1,955 1,955 137 4,827 237
pies 66,196 9,472 795 785 785 49 14,942 95
icecast-
server

68,564 6,183 239 232 232 51 109 107
raptor 76,378 8,889 2,156 2,148 2,148 242 17,844 345
dico 84,333 4,349 402 396 396 38 156 51
lsh 110,898 18,880 330 325 325 33 139 251
Total 7,406 7,154 7,166 656 40,677 1,207



실험�결과

• Generalization�:�작은�프로그램으로만�(<60KLOC)�학습

52

Program LOC Abs. Loc.
# Alarms Time(s)

Itv All Small Itv All Small

pies 66,196 9,472 795 785 785 49 95 98

icecast-
server

68,564 6,183 239 232 232 51 113 99

raptor 76,378 8,889 2,156 2,148 2,148 242 345 388

dico 84,333 4,349 402 396 396 38 61 62

lsh 110,898 18,880 330 325 325 33 251 251

Total 7,406 3,886 3,886 413 865 898

+4%



정리

• 선별적�관계�분석을�더욱�유연하게�

• 기계학습�(학생)�+�정적분석�(선생님)�

• 예비분석만�이용하는�기술보다�33배�빠른�결과

53

+
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soundness

scalability precision

soundness

scalability precision

기계�학습을�이용하여��
선별적으로�안전하게�정적�분석�
(Selectively�Unsound�Analysis�by�Machine�Learning)

-�Machine-Learning-Guided�Selectively�Unsound�Static�Analysis,�ICSE’17
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program states

error states

sound unsoundselectively�unsound

while(e){ C } if(e){ C } A;lib();B; A;B;

program states

error states

program states

error states
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str = "hello world";

for(i=0; !str[i]; i++)// buffer access 1

skip;

size = positive_input();

for(i=0; i<size; i++)

skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";

i = 0;

if (!str[i]) // buffer access 1

skip;

size = positive_input();

i = 0;

if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";

i = 0;

if(!str[i]) // buffer access 1

skip;

size = positive_input();

for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.
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str = "hello world";

for(i=0; !str[i]; i++)// buffer access 1

skip;

size = positive_input();

for(i=0; i<size; i++)

skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";

i = 0;

if (!str[i]) // buffer access 1

skip;

size = positive_input();

i = 0;

if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";

i = 0;

if(!str[i]) // buffer access 1

skip;

size = positive_input();

for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

str.size: [12, 12]

i: [0, +oo]

size: [0, +oo]

i: [0, +oo]
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str = "hello world";

for(i=0; !str[i]; i++)// buffer access 1

skip;

size = positive_input();

for(i=0; i<size; i++)

skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";

i = 0;

if (!str[i]) // buffer access 1

skip;

size = positive_input();

i = 0;

if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";

i = 0;

if(!str[i]) // buffer access 1

skip;

size = positive_input();

for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.
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i: [0, 0]

str = "hello world";

for(i=0; !str[i]; i++)// buffer access 1

skip;

size = positive_input();

for(i=0; i<size; i++)

skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";

i = 0;

if (!str[i]) // buffer access 1

skip;

size = positive_input();

i = 0;

if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";

i = 0;

if(!str[i]) // buffer access 1

skip;

size = positive_input();

for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

i: [0, 0]
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str = "hello world";

for(i=0; !str[i]; i++)// buffer access 1

skip;

size = positive_input();

for(i=0; i<size; i++)

skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";

i = 0;

if (!str[i]) // buffer access 1

skip;

size = positive_input();

i = 0;

if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";

i = 0;

if(!str[i]) // buffer access 1

skip;

size = positive_input();

for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

i: [0, 0]

i: [0, +oo]
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F 2 Pgm ⇥⇧ ! A

while(e){ C } if(e){ C }

A;lib();B; A;B;

⇧ = 2Loop

⇧ = 2Lib

⇡ 2 ⇧

p 62 ⇡
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Figure 2: The overview of our system. Given static
analyzer F and codebase, our system automatically
generates training data. Using the training data, a
machine learning algorithm trains a classifier that
infers the new harmless unsoundness for the test
program.

in the codebase is collected as training data, and then ef-
fectively learnt by an anomaly detection algorithm. It is be-
cause 1) we can easily observe regular properties about the
harmless unsoundness for a static analysis, but not about the
other side; 2) there is usually much more training data for
harmless unsoundness than harmful one. We use the One-
Class SVM [17] classifier for this purpose.

3. OUR TECHNIQUE
In this section, we explain the details of our technique. Our

method first parameterizes the static analysis by soundness
(Section 3.1). Next, we describe our overall approach (Sec-
tion 3.2) and machine learning-based parameter inference
algorithm (Section 3.3).

3.1 Static Analysis Parameterized by Sound-
ness

We use a variant of the well-known setting for the param-
eterized static analysis [8], where the parameter dictates the
analysis’s soundness, not the analysis’s precision as typical
in the literature [8, 12, 26, 16]. Let P 2 Pgm be a program,
CP the set of program points of P , and JP a set of pro-
gram components for which we control the soundness. For
instance, JP denotes the set of loops, the set of library calls,
or the set of complex operations such as bitwise operations
made in the program. A soundness parameter ⇡ ✓ ⇧P of
program P is a set of program components

⇡ ✓ ⇧P = }(JP )

that specifies which program components to soundly ana-
lyze. For instance, when JP = {j1, · · · , jn} is the set of loops,
ji 2 ⇡ means that the ith loop in the program is selected
to be analyzed soundly, otherwise (ji 62 ⇡) the analysis be-
comes unsound for the loop: we unroll the loop only once
and ignore all the subsequent loop iterations. Let 1 be the
parameter where every component is selected and 0 the pa-
rameter where no component is selected. Thus, 1 (resp., 0)
represents the full soundness (resp., full unsoundness) with
respect to the soundness parameter space ⇧P . In the rest of

this paper, we omit subscript P (e.g., from CP , JP , and ⇧P )
when there is no confusion.
We model a static analyzer as a function

F : Pgm ⇥⇧ ! }(C)

which, given a program P and its soundness parameter ⇡,
returns alarms, a set of program points that the analyzer
concludes as dangerous.
Our goal is to find a sweet spot in the parameter space.

For instance, F (P,1) denotes the analysis that is fully sound
with respect to the parameter space ⇧, which can detect all
bugs typically at the cost of a large number of false alarms.
F (P,0) means the fully unsound analysis, which typically
reports the smallest number of false alarms (with respect
to the parameter space ⇧) but is at risk of missing a large
amount of real bugs as well. We aim to find a parameter
between them, where the analysis reports the fewest possible
false alarms yet still detects most of the real bugs.
Note that the existing parameter search algorithms for

static analyzers [8, 12, 26, 16] cannot be used for our pur-
pose. For a given program to analyze, the existing search
algorithms infer a precision setting by analyzing the pro-
gram a priori (either by iterative refinements [12, 26] or a
quick pre-analysis [16]). This approach, however, is feasible
only when the evaluation criterion (i.e., precision) can be de-
termined automatically. In our case, the evaluation involves
judging truth and falsehood of alarms from static analyzers,
which is undecidable in general. This explains why we take
a machine learning approach to infer soundness parameters.

3.2 Big Picture
As typical in other machine learning techniques, our method

consists of learning and testing phases.

Learning.

We first learn from an existing codebase a statistical model

M : Pgm ! ⇧ (1)

that predicts a soundness parameter for a given program.
Ideally, the output soundness parameter M(P ) describes
precision-e↵ective yet harmless unsoundness for program P ,
that is, the unsound treatment of program components in
M(P ) has no e↵ect on the capability to detect real bugs.
The codebase is a set of annotated programs

P = {(P1, B1), . . . , (Pn, Bn)}

where each program Pi 2 Pgm is associated with a set of
buggy program points Bi ✓ CPi .

Testing.

Using the model learnt from the codebase, we run the
static analysis for a new, unseen program P as follows:

F (P,M(P )).

That is, we first determine the soundness parameter (M(P ))
for the program P , and instantiate the static analysis with
the parameter.

3.3 Learning Harmless Unsoundness
Now, we explain the learning phase. We use a supervised

learning, where a classifier is learnt from a set of training
examples. Since we use the One-Class SVM, the training
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Testing. Using the model learnt from the codebase, we run
the static analysis for a new, unseen program P as follows:

F (P,M(P )).

That is, we first determine the soundness parameter (M(P ))
for the program P , and instantiate the static analysis with
the parameter.

3.3 Learning Precision-Effective Unsoundness
Now, we explain the learning phase. We use a supervised
learning, where a classifier is learnt from a set of training
examples. Since we use the One-Class SVM, the training
examples include only the features for precision-e↵ective yet
harmless program components.

Features. Suppose that we have n features

f = {f1, . . . , fn}

for program components J, where each feature

fi : J ! {0, 1}

represents a binary property of program components.1 Then,
each program component j 2 J is represented by a feature
vector:

f(j) = hf1(j), . . . , fn(j)i

Note that the features are given for each analysis, and the
entire same feature sets are reused for di↵erent programs. In
the next section, we present the feature sets for our instance
analyses.

Training data generation. We automatically generate the
training data from the codebase P. Training data is a set of
feature vectors that describe precision-e↵ective yet harmless
program components, i.e., unsoundly analyzing them does
not miss bugs but improves the precision. Our system in-
dividually applies unsoundness to each program component
in the codebase and decides the components as precision-
e↵ective when their unsound treatment gives strictly better
results than the fully sound analysis.

Algorithm 1 Training data generation

1: T := ;
2: for all (Pi, Bi) 2 P do
3: Ai = F (Pi,1)
4: (At, Af ) := (Ai \Bi, Ai \Bi)
5: for all j 2 JPi do
6: A

0
i = F (Pi,1 \ {j})

7: (A0
t, A

0
f ) = (A0

i \Bi, A
0
i \Bi)

8: if |A0
t| = |At| ^ |A0

f | < |Af | then
9: T := T [ {f(j)}
10: end if
11: end for
12: end for

Algorithm 1 describes our algorithm for training data gen-
eration. For each program Pi in the codebase, we first run

1For presentation brevity. In experiments, we use both bi-
nary and numeric features.

the static analysis with the fully sound setting (line 3), and
classify the alarms Ai into true (At) and false (Af ) alarms.
Then, for each program component j 2 JPi , we run the
static analysis without the j-th component (1 \ {j}). The
component j is determined to be precision-e↵ective when
the analysis unsound for j maintains all of the real bugs
(|At| = |A0

t|) but reports fewer false alarms (|A0
f | < |Af |).

We collect all such precision-e↵ective program components
in T ✓ {0, 1}n.

The algorithm has linear time complexity to the number
of target components in the codebase. For each component
in all of the programs, the algorithm runs the static anal-
ysis (line 6). There might be combinatorial e↵ect between
precision-e↵ective components. However, learning the com-
bination requires exponential time complexity and more so-
phisticated features that describe the relation of compo-
nents. Instead, we targets to the individual e↵ect of each
component and will show the e↵ectiveness in the experi-
ments.

Learning a classifier. Given a set of training examples
T ✓ {0, 1}n, we learn a classifier

C : {0, 1}n ! {0, 1}

that, given predicts precision-e↵ective components. We use
an o↵-the-shelf OC-SVM (One Class Support Vector Ma-
chine) [17] algorithm to build the classifier. The algorithm
learns a single class of elements and derives an classifier that
is specialized for outlier detection. This technique is used in
various applications especially when the one common class is
remarkable, e.g., malware detection for android apps [5] and
anomalous behavior detection [6]. In our case, it is used to
learn a regular properties of precision-e↵ective yet harmless
program components while conservatively classifying abnor-
mal components as harmful.

With the classifier, we define the model (1) as follows:

M(P ) = {j 2 JP | C(f(j)) = 1}

That is, given a new program P , we collect the program
components j 2 JP of P that are judged precision-e↵ective
by the classifier.

4. INSTANCES
In this section, we show two instances of our system on top of
a bu↵er overflow detector for C-like language. The unsound-
ness targets are loops and external library calls, because in
static analysis they are the main sources of false alarms and
hence often unsoundly handled in real-world analyzers [8,
22, 23, 4]. We independently infer precision-e↵ective loops
and library calls. The inferred loops are unrolled only once,
hence regarded as conditional statements, meanwhile the in-
ferred library calls are ignored like no-op.

In the rest of this section, we first define the static analysis
whose soundness is parametric in loops and library calls,
then presents the features that we used for interval domain–
based analysis for bu↵er-overflow detection.
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Testing. Using the model learnt from the codebase, we run
the static analysis for a new, unseen program P as follows:

F (P,M(P )).

That is, we first determine the soundness parameter (M(P ))
for the program P , and instantiate the static analysis with
the parameter.

3.3 Learning Precision-Effective Unsoundness
Now, we explain the learning phase. We use a supervised
learning, where a classifier is learnt from a set of training
examples. Since we use the One-Class SVM, the training
examples include only the features for precision-e↵ective yet
harmless program components.

Features. Suppose that we have n features

f = {f1, . . . , fn}

for program components J, where each feature

fi : J ! {0, 1}

represents a binary property of program components.1 Then,
each program component j 2 J is represented by a feature
vector:

f(j) = hf1(j), . . . , fn(j)i

Note that the features are given for each analysis, and the
entire same feature sets are reused for di↵erent programs. In
the next section, we present the feature sets for our instance
analyses.

Training data generation. We automatically generate the
training data from the codebase P. Training data is a set of
feature vectors that describe precision-e↵ective yet harmless
program components, i.e., unsoundly analyzing them does
not miss bugs but improves the precision. Our system in-
dividually applies unsoundness to each program component
in the codebase and decides the components as precision-
e↵ective when their unsound treatment gives strictly better
results than the fully sound analysis.

Algorithm 1 Training data generation

1: T := ;
2: for all (Pi, Bi) 2 P do
3: Ai = F (Pi,1)
4: (At, Af ) := (Ai \Bi, Ai \Bi)
5: for all j 2 JPi do
6: A

0
i = F (Pi,1 \ {j})

7: (A0
t, A

0
f ) = (A0

i \Bi, A
0
i \Bi)

8: if |A0
t| = |At| ^ |A0

f | < |Af | then
9: T := T [ {f(j)}
10: end if
11: end for
12: end for

Algorithm 1 describes our algorithm for training data gen-
eration. For each program Pi in the codebase, we first run

1For presentation brevity. In experiments, we use both bi-
nary and numeric features.

the static analysis with the fully sound setting (line 3), and
classify the alarms Ai into true (At) and false (Af ) alarms.
Then, for each program component j 2 JPi , we run the
static analysis without the j-th component (1 \ {j}). The
component j is determined to be precision-e↵ective when
the analysis unsound for j maintains all of the real bugs
(|At| = |A0

t|) but reports fewer false alarms (|A0
f | < |Af |).

We collect all such precision-e↵ective program components
in T ✓ {0, 1}n.

The algorithm has linear time complexity to the number
of target components in the codebase. For each component
in all of the programs, the algorithm runs the static anal-
ysis (line 6). There might be combinatorial e↵ect between
precision-e↵ective components. However, learning the com-
bination requires exponential time complexity and more so-
phisticated features that describe the relation of compo-
nents. Instead, we targets to the individual e↵ect of each
component and will show the e↵ectiveness in the experi-
ments.

Learning a classifier. Given a set of training examples
T ✓ {0, 1}n, we learn a classifier

C : {0, 1}n ! {0, 1}

that, given predicts precision-e↵ective components. We use
an o↵-the-shelf OC-SVM (One Class Support Vector Ma-
chine) [17] algorithm to build the classifier. The algorithm
learns a single class of elements and derives an classifier that
is specialized for outlier detection. This technique is used in
various applications especially when the one common class is
remarkable, e.g., malware detection for android apps [5] and
anomalous behavior detection [6]. In our case, it is used to
learn a regular properties of precision-e↵ective yet harmless
program components while conservatively classifying abnor-
mal components as harmful.

With the classifier, we define the model (1) as follows:

M(P ) = {j 2 JP | C(f(j)) = 1}

That is, given a new program P , we collect the program
components j 2 JP of P that are judged precision-e↵ective
by the classifier.

4. INSTANCES
In this section, we show two instances of our system on top of
a bu↵er overflow detector for C-like language. The unsound-
ness targets are loops and external library calls, because in
static analysis they are the main sources of false alarms and
hence often unsoundly handled in real-world analyzers [8,
22, 23, 4]. We independently infer precision-e↵ective loops
and library calls. The inferred loops are unrolled only once,
hence regarded as conditional statements, meanwhile the in-
ferred library calls are ignored like no-op.

In the rest of this section, we first define the static analysis
whose soundness is parametric in loops and library calls,
then presents the features that we used for interval domain–
based analysis for bu↵er-overflow detection.

(프로그램, 버그 위치)
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Testing. Using the model learnt from the codebase, we run
the static analysis for a new, unseen program P as follows:

F (P,M(P )).

That is, we first determine the soundness parameter (M(P ))
for the program P , and instantiate the static analysis with
the parameter.

3.3 Learning Precision-Effective Unsoundness
Now, we explain the learning phase. We use a supervised
learning, where a classifier is learnt from a set of training
examples. Since we use the One-Class SVM, the training
examples include only the features for precision-e↵ective yet
harmless program components.

Features. Suppose that we have n features

f = {f1, . . . , fn}

for program components J, where each feature

fi : J ! {0, 1}

represents a binary property of program components.1 Then,
each program component j 2 J is represented by a feature
vector:

f(j) = hf1(j), . . . , fn(j)i

Note that the features are given for each analysis, and the
entire same feature sets are reused for di↵erent programs. In
the next section, we present the feature sets for our instance
analyses.

Training data generation. We automatically generate the
training data from the codebase P. Training data is a set of
feature vectors that describe precision-e↵ective yet harmless
program components, i.e., unsoundly analyzing them does
not miss bugs but improves the precision. Our system in-
dividually applies unsoundness to each program component
in the codebase and decides the components as precision-
e↵ective when their unsound treatment gives strictly better
results than the fully sound analysis.

Algorithm 1 Training data generation

1: T := ;
2: for all (Pi, Bi) 2 P do
3: Ai = F (Pi,1)
4: (At, Af ) := (Ai \Bi, Ai \Bi)
5: for all j 2 JPi do
6: A

0
i = F (Pi,1 \ {j})

7: (A0
t, A

0
f ) = (A0

i \Bi, A
0
i \Bi)

8: if |A0
t| = |At| ^ |A0

f | < |Af | then
9: T := T [ {f(j)}
10: end if
11: end for
12: end for

Algorithm 1 describes our algorithm for training data gen-
eration. For each program Pi in the codebase, we first run

1For presentation brevity. In experiments, we use both bi-
nary and numeric features.

the static analysis with the fully sound setting (line 3), and
classify the alarms Ai into true (At) and false (Af ) alarms.
Then, for each program component j 2 JPi , we run the
static analysis without the j-th component (1 \ {j}). The
component j is determined to be precision-e↵ective when
the analysis unsound for j maintains all of the real bugs
(|At| = |A0

t|) but reports fewer false alarms (|A0
f | < |Af |).

We collect all such precision-e↵ective program components
in T ✓ {0, 1}n.

The algorithm has linear time complexity to the number
of target components in the codebase. For each component
in all of the programs, the algorithm runs the static anal-
ysis (line 6). There might be combinatorial e↵ect between
precision-e↵ective components. However, learning the com-
bination requires exponential time complexity and more so-
phisticated features that describe the relation of compo-
nents. Instead, we targets to the individual e↵ect of each
component and will show the e↵ectiveness in the experi-
ments.

Learning a classifier. Given a set of training examples
T ✓ {0, 1}n, we learn a classifier

C : {0, 1}n ! {0, 1}

that, given predicts precision-e↵ective components. We use
an o↵-the-shelf OC-SVM (One Class Support Vector Ma-
chine) [17] algorithm to build the classifier. The algorithm
learns a single class of elements and derives an classifier that
is specialized for outlier detection. This technique is used in
various applications especially when the one common class is
remarkable, e.g., malware detection for android apps [5] and
anomalous behavior detection [6]. In our case, it is used to
learn a regular properties of precision-e↵ective yet harmless
program components while conservatively classifying abnor-
mal components as harmful.

With the classifier, we define the model (1) as follows:

M(P ) = {j 2 JP | C(f(j)) = 1}

That is, given a new program P , we collect the program
components j 2 JP of P that are judged precision-e↵ective
by the classifier.

4. INSTANCES
In this section, we show two instances of our system on top of
a bu↵er overflow detector for C-like language. The unsound-
ness targets are loops and external library calls, because in
static analysis they are the main sources of false alarms and
hence often unsoundly handled in real-world analyzers [8,
22, 23, 4]. We independently infer precision-e↵ective loops
and library calls. The inferred loops are unrolled only once,
hence regarded as conditional statements, meanwhile the in-
ferred library calls are ignored like no-op.

In the rest of this section, we first define the static analysis
whose soundness is parametric in loops and library calls,
then presents the features that we used for interval domain–
based analysis for bu↵er-overflow detection.

안전한 분석 결과 (알람 개수)
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Testing. Using the model learnt from the codebase, we run
the static analysis for a new, unseen program P as follows:

F (P,M(P )).

That is, we first determine the soundness parameter (M(P ))
for the program P , and instantiate the static analysis with
the parameter.

3.3 Learning Precision-Effective Unsoundness
Now, we explain the learning phase. We use a supervised
learning, where a classifier is learnt from a set of training
examples. Since we use the One-Class SVM, the training
examples include only the features for precision-e↵ective yet
harmless program components.

Features. Suppose that we have n features

f = {f1, . . . , fn}

for program components J, where each feature

fi : J ! {0, 1}

represents a binary property of program components.1 Then,
each program component j 2 J is represented by a feature
vector:

f(j) = hf1(j), . . . , fn(j)i

Note that the features are given for each analysis, and the
entire same feature sets are reused for di↵erent programs. In
the next section, we present the feature sets for our instance
analyses.

Training data generation. We automatically generate the
training data from the codebase P. Training data is a set of
feature vectors that describe precision-e↵ective yet harmless
program components, i.e., unsoundly analyzing them does
not miss bugs but improves the precision. Our system in-
dividually applies unsoundness to each program component
in the codebase and decides the components as precision-
e↵ective when their unsound treatment gives strictly better
results than the fully sound analysis.

Algorithm 1 Training data generation

1: T := ;
2: for all (Pi, Bi) 2 P do
3: Ai = F (Pi,1)
4: (At, Af ) := (Ai \Bi, Ai \Bi)
5: for all j 2 JPi do
6: A

0
i = F (Pi,1 \ {j})

7: (A0
t, A

0
f ) = (A0

i \Bi, A
0
i \Bi)

8: if |A0
t| = |At| ^ |A0

f | < |Af | then
9: T := T [ {f(j)}
10: end if
11: end for
12: end for

Algorithm 1 describes our algorithm for training data gen-
eration. For each program Pi in the codebase, we first run

1For presentation brevity. In experiments, we use both bi-
nary and numeric features.

the static analysis with the fully sound setting (line 3), and
classify the alarms Ai into true (At) and false (Af ) alarms.
Then, for each program component j 2 JPi , we run the
static analysis without the j-th component (1 \ {j}). The
component j is determined to be precision-e↵ective when
the analysis unsound for j maintains all of the real bugs
(|At| = |A0

t|) but reports fewer false alarms (|A0
f | < |Af |).

We collect all such precision-e↵ective program components
in T ✓ {0, 1}n.

The algorithm has linear time complexity to the number
of target components in the codebase. For each component
in all of the programs, the algorithm runs the static anal-
ysis (line 6). There might be combinatorial e↵ect between
precision-e↵ective components. However, learning the com-
bination requires exponential time complexity and more so-
phisticated features that describe the relation of compo-
nents. Instead, we targets to the individual e↵ect of each
component and will show the e↵ectiveness in the experi-
ments.

Learning a classifier. Given a set of training examples
T ✓ {0, 1}n, we learn a classifier

C : {0, 1}n ! {0, 1}

that, given predicts precision-e↵ective components. We use
an o↵-the-shelf OC-SVM (One Class Support Vector Ma-
chine) [17] algorithm to build the classifier. The algorithm
learns a single class of elements and derives an classifier that
is specialized for outlier detection. This technique is used in
various applications especially when the one common class is
remarkable, e.g., malware detection for android apps [5] and
anomalous behavior detection [6]. In our case, it is used to
learn a regular properties of precision-e↵ective yet harmless
program components while conservatively classifying abnor-
mal components as harmful.

With the classifier, we define the model (1) as follows:

M(P ) = {j 2 JP | C(f(j)) = 1}

That is, given a new program P , we collect the program
components j 2 JP of P that are judged precision-e↵ective
by the classifier.

4. INSTANCES
In this section, we show two instances of our system on top of
a bu↵er overflow detector for C-like language. The unsound-
ness targets are loops and external library calls, because in
static analysis they are the main sources of false alarms and
hence often unsoundly handled in real-world analyzers [8,
22, 23, 4]. We independently infer precision-e↵ective loops
and library calls. The inferred loops are unrolled only once,
hence regarded as conditional statements, meanwhile the in-
ferred library calls are ignored like no-op.

In the rest of this section, we first define the static analysis
whose soundness is parametric in loops and library calls,
then presents the features that we used for interval domain–
based analysis for bu↵er-overflow detection.

특정 부품에 대한 안전성을  
하나씩 포기하며 분석
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Testing. Using the model learnt from the codebase, we run
the static analysis for a new, unseen program P as follows:

F (P,M(P )).

That is, we first determine the soundness parameter (M(P ))
for the program P , and instantiate the static analysis with
the parameter.

3.3 Learning Precision-Effective Unsoundness
Now, we explain the learning phase. We use a supervised
learning, where a classifier is learnt from a set of training
examples. Since we use the One-Class SVM, the training
examples include only the features for precision-e↵ective yet
harmless program components.

Features. Suppose that we have n features

f = {f1, . . . , fn}

for program components J, where each feature

fi : J ! {0, 1}

represents a binary property of program components.1 Then,
each program component j 2 J is represented by a feature
vector:

f(j) = hf1(j), . . . , fn(j)i

Note that the features are given for each analysis, and the
entire same feature sets are reused for di↵erent programs. In
the next section, we present the feature sets for our instance
analyses.

Training data generation. We automatically generate the
training data from the codebase P. Training data is a set of
feature vectors that describe precision-e↵ective yet harmless
program components, i.e., unsoundly analyzing them does
not miss bugs but improves the precision. Our system in-
dividually applies unsoundness to each program component
in the codebase and decides the components as precision-
e↵ective when their unsound treatment gives strictly better
results than the fully sound analysis.

Algorithm 1 Training data generation

1: T := ;
2: for all (Pi, Bi) 2 P do
3: Ai = F (Pi,1)
4: (At, Af ) := (Ai \Bi, Ai \Bi)
5: for all j 2 JPi do
6: A

0
i = F (Pi,1 \ {j})

7: (A0
t, A

0
f ) = (A0

i \Bi, A
0
i \Bi)

8: if |A0
t| = |At| ^ |A0

f | < |Af | then
9: T := T [ {f(j)}
10: end if
11: end for
12: end for

Algorithm 1 describes our algorithm for training data gen-
eration. For each program Pi in the codebase, we first run

1For presentation brevity. In experiments, we use both bi-
nary and numeric features.

the static analysis with the fully sound setting (line 3), and
classify the alarms Ai into true (At) and false (Af ) alarms.
Then, for each program component j 2 JPi , we run the
static analysis without the j-th component (1 \ {j}). The
component j is determined to be precision-e↵ective when
the analysis unsound for j maintains all of the real bugs
(|At| = |A0

t|) but reports fewer false alarms (|A0
f | < |Af |).

We collect all such precision-e↵ective program components
in T ✓ {0, 1}n.

The algorithm has linear time complexity to the number
of target components in the codebase. For each component
in all of the programs, the algorithm runs the static anal-
ysis (line 6). There might be combinatorial e↵ect between
precision-e↵ective components. However, learning the com-
bination requires exponential time complexity and more so-
phisticated features that describe the relation of compo-
nents. Instead, we targets to the individual e↵ect of each
component and will show the e↵ectiveness in the experi-
ments.

Learning a classifier. Given a set of training examples
T ✓ {0, 1}n, we learn a classifier

C : {0, 1}n ! {0, 1}

that, given predicts precision-e↵ective components. We use
an o↵-the-shelf OC-SVM (One Class Support Vector Ma-
chine) [17] algorithm to build the classifier. The algorithm
learns a single class of elements and derives an classifier that
is specialized for outlier detection. This technique is used in
various applications especially when the one common class is
remarkable, e.g., malware detection for android apps [5] and
anomalous behavior detection [6]. In our case, it is used to
learn a regular properties of precision-e↵ective yet harmless
program components while conservatively classifying abnor-
mal components as harmful.

With the classifier, we define the model (1) as follows:

M(P ) = {j 2 JP | C(f(j)) = 1}

That is, given a new program P , we collect the program
components j 2 JP of P that are judged precision-e↵ective
by the classifier.

4. INSTANCES
In this section, we show two instances of our system on top of
a bu↵er overflow detector for C-like language. The unsound-
ness targets are loops and external library calls, because in
static analysis they are the main sources of false alarms and
hence often unsoundly handled in real-world analyzers [8,
22, 23, 4]. We independently infer precision-e↵ective loops
and library calls. The inferred loops are unrolled only once,
hence regarded as conditional statements, meanwhile the in-
ferred library calls are ignored like no-op.

In the rest of this section, we first define the static analysis
whose soundness is parametric in loops and library calls,
then presents the features that we used for interval domain–
based analysis for bu↵er-overflow detection.

거짓 경보는 감소하고  
버그는 여전히 다 찾는다면 
학습 데이터 (“무해한” 부품)
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str = "hello world";

for(i=0; !str[i]; i++)// buffer access 1

skip;

size = positive_input();

for(i=0; i<size; i++)

skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";

i = 0;

if (!str[i]) // buffer access 1

skip;

size = positive_input();

i = 0;

if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";

i = 0;

if(!str[i]) // buffer access 1

skip;

size = positive_input();

for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.



“무해한”�부품

• 거짓�경보를�유발하는�부품:�전형적,�풍부�

• 프로그래밍�패턴,�분석기�도메인에�따른�특징�

• 거짓�경보�>>�실제�경보�

• 예)

69

str = "hello world";

for(i=0; !str[i]; i++)// buffer access 1

skip;

size = positive_input();

for(i=0; i<size; i++)

skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";

i = 0;

if (!str[i]) // buffer access 1

skip;

size = positive_input();

i = 0;

if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";

i = 0;

if(!str[i]) // buffer access 1

skip;

size = positive_input();

for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

무해한�순환문�
- 종료조건에서�Null�을�검사�
- 유한한�문자열을�순환�
- 전역변수를�안씀�
- …
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str = "hello world";

for(i=0; !str[i]; i++)// buffer access 1

skip;

size = positive_input();

for(i=0; i<size; i++)

skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";

i = 0;

if (!str[i]) // buffer access 1

skip;

size = positive_input();

i = 0;

if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";

i = 0;

if(!str[i]) // buffer access 1

skip;

size = positive_input();

for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

유해한�순환문�
- 종료�조건이�외부�입력에�의존�
- 순환문�밖에�있는�배열의�인덱스�
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Target Feature Property Type Description

Loop

Null Syntactic Binary Whether the loop condition contains nulls or not
Const Syntactic Binary Whether the loop condition contains constants or not
Array Syntactic Binary Whether the loop condition contains array accesses or not

Conjunction Syntactic Binary Whether the loop condition contains && or not
IdxSingle Syntactic Binary Whether the loop condition contains an index for a single array in the loop

IdxMulti Syntactic Binary Whether the loop condition contains an index for multiple arrays in the loop
IdxOutside Syntactic Binary Whether the loop condition contains an index for an array outside of the loop

InitIdx Syntactic Binary Whether an index is initialized before the loop
Exit Syntactic Numeric The (normalized) number of exits in the loop
Size Syntactic Numeric The (normalized) size of the loop

ArrayAccess Syntactic Numeric The (normalized) number of array accesses in the loop
ArithInc Syntactic Numeric The (normalized) number of arithmetic increments in the loop

PointerInc Syntactic Numeric The (normalized) number of pointer increments in the loop
Prune Semantic Binary Whether the loop condition prunes the abstract state or not
Input Semantic Binary Whether the loop condition is determined by external inputs
GVar Semantic Binary Whether global variables are accessed in the loop condition

FinInterval Semantic Binary Whether a variable has a finite interval value in the loop condition
FinArray Semantic Binary Whether a variable has a finite size of array in the loop condition
FinString Semantic Binary Whether a variable has a finite string in the loop condition

LCSize Semantic Binary Whether a variable has an array of which the size is a left-closed interval
LCOffset Semantic Binary Whether a variable has an array of which the offset is a left-closed interval
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the loop

Library

Const Syntactic Binary Whether the parameters contain constants or not
Void Syntactic Binary Whether the return type is void or not

Int Syntactic Binary Whether the return type is int or not
CString Syntactic Binary Whether the function is declared in string.h or not

InsideLoop Syntactic Binary Whether the function is called in a loop or not
#Args Syntactic Numeric The (normalized) number of arguments

DefParam Semantic Binary Whether a parameter are defined in a loop or not
UseRet Semantic Binary Whether the return value is used in a loop or not

UptParam Semantic Binary Whether a parameter is update via the library call
Escape Semantic Binary Whether the return value escapes the caller

GVar Semantic Binary Whether a parameters points to a global variable
Input Semantic Binary Whether a parameters are determined by external inputs

FinInterval Semantic Binary Whether a parameter have a finite interval value
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the arguments

#ArgString Semantic Numeric The (normalized) number of string arguments

Fig. 5. Features for typical loops and library calls in C programs

B. Effectiveness of Our Approach

We evaluate the effectiveness of our approach by compar-
ing precision of SELECTIVE to that of the other analyzers,
BASELINE and UNIFORM. We use cross-validation, a model
validation technique for assessing how the results of a statis-
tical analysis will generalize to new data. We show the results
from three types of cross-validation: leave-one-out, 2-fold, and
3-fold cross-validation.

1) Leave-one-out Cross-validation: This is one of the most
common types of cross-validation, which uses one observation
as the validation set and the remaining observations as the
training set. In case of the interval analysis, for example,
among the 23 benchmark programs, one program is used
for validating and measuring the effectiveness of the learned
model, and the other remaining 22 programs are used for
training.

Table I shows the results of the leave-one-out cross-
validation for the interval analysis. We measured the number of
true (T) and false (F) alarms from BASELINE, UNIFORM, and
SELECTIVE. In terms of true alarms, BASELINE detects 118
real bugs (FNR: 14.5%) in the programs. While UNIFORM de-
tects only 33 bugs (FNR: 76.1%), SELECTIVE effectively de-

BASELINE SELECTIVE UNIFORM
Program LOC Bug T F T F T F
SM-1 0.5K 28 28 18 28 15 13 5
SM-2 0.8K 2 2 16 1 4 0 0
SM-3 0.7K 3 3 3 3 3 0 0
SM-4 0.7K 10 10 6 10 6 6 0
SM-5 1.7K 3 3 6 3 6 0 0
SM-6 0.4K 1 0 0 0 0 0 0
SM-7 1.1K 2 2 32 0 2 0 0
BIND-1 1.2K 1 1 35 1 33 0 0
BIND-2 1.7K 1 1 45 0 41 0 0
BIND-3 0.5K 1 1 4 0 1 0 0
BIND-4 1.1K 2 2 0 0 0 0 0
FTP-1 0.8K 4 4 13 4 3 0 0
FTP-2 1.5K 1 1 7 1 6 0 3
FTP-3 1.5K 24 24 25 23 17 7 12
polymorph-0.4.0 0.7K 10 10 6 3 6 0 6
ncompress-4.2.4 1.9K 12 0 10 4 0 0 0
129.compress 2.0K 7 7 34 7 14 4 7
spell-1.0 2.2K 1 0 0 0 0 0 0
man-1.5h1 4.7K 6 5 60 1 28 0 13
256.bzip2 4.7K 3 3 149 3 21 3 21
gzip-1.2.4a 8.2K 13 11 87 8 34 0 24
bc-1.06 17.0K 2 0 57 0 10 0 9
sed-4.0.8 25.9K 1 0 64 0 14 0 4
Total 138 118 677 100 264 33 104

TABLE I
THE NUMBER OF ALARMS IN INTERVAL ANALYSIS
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Target Feature Property Type Description

Loop

Null Syntactic Binary Whether the loop condition contains nulls or not
Const Syntactic Binary Whether the loop condition contains constants or not
Array Syntactic Binary Whether the loop condition contains array accesses or not

Conjunction Syntactic Binary Whether the loop condition contains && or not
IdxSingle Syntactic Binary Whether the loop condition contains an index for a single array in the loop

IdxMulti Syntactic Binary Whether the loop condition contains an index for multiple arrays in the loop
IdxOutside Syntactic Binary Whether the loop condition contains an index for an array outside of the loop

InitIdx Syntactic Binary Whether an index is initialized before the loop
Exit Syntactic Numeric The (normalized) number of exits in the loop
Size Syntactic Numeric The (normalized) size of the loop

ArrayAccess Syntactic Numeric The (normalized) number of array accesses in the loop
ArithInc Syntactic Numeric The (normalized) number of arithmetic increments in the loop

PointerInc Syntactic Numeric The (normalized) number of pointer increments in the loop
Prune Semantic Binary Whether the loop condition prunes the abstract state or not
Input Semantic Binary Whether the loop condition is determined by external inputs
GVar Semantic Binary Whether global variables are accessed in the loop condition

FinInterval Semantic Binary Whether a variable has a finite interval value in the loop condition
FinArray Semantic Binary Whether a variable has a finite size of array in the loop condition
FinString Semantic Binary Whether a variable has a finite string in the loop condition

LCSize Semantic Binary Whether a variable has an array of which the size is a left-closed interval
LCOffset Semantic Binary Whether a variable has an array of which the offset is a left-closed interval
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the loop

Library

Const Syntactic Binary Whether the parameters contain constants or not
Void Syntactic Binary Whether the return type is void or not

Int Syntactic Binary Whether the return type is int or not
CString Syntactic Binary Whether the function is declared in string.h or not

InsideLoop Syntactic Binary Whether the function is called in a loop or not
#Args Syntactic Numeric The (normalized) number of arguments

DefParam Semantic Binary Whether a parameter are defined in a loop or not
UseRet Semantic Binary Whether the return value is used in a loop or not

UptParam Semantic Binary Whether a parameter is update via the library call
Escape Semantic Binary Whether the return value escapes the caller

GVar Semantic Binary Whether a parameters points to a global variable
Input Semantic Binary Whether a parameters are determined by external inputs

FinInterval Semantic Binary Whether a parameter have a finite interval value
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the arguments

#ArgString Semantic Numeric The (normalized) number of string arguments

Fig. 5. Features for typical loops and library calls in C programs

B. Effectiveness of Our Approach

We evaluate the effectiveness of our approach by compar-
ing precision of SELECTIVE to that of the other analyzers,
BASELINE and UNIFORM. We use cross-validation, a model
validation technique for assessing how the results of a statis-
tical analysis will generalize to new data. We show the results
from three types of cross-validation: leave-one-out, 2-fold, and
3-fold cross-validation.

1) Leave-one-out Cross-validation: This is one of the most
common types of cross-validation, which uses one observation
as the validation set and the remaining observations as the
training set. In case of the interval analysis, for example,
among the 23 benchmark programs, one program is used
for validating and measuring the effectiveness of the learned
model, and the other remaining 22 programs are used for
training.

Table I shows the results of the leave-one-out cross-
validation for the interval analysis. We measured the number of
true (T) and false (F) alarms from BASELINE, UNIFORM, and
SELECTIVE. In terms of true alarms, BASELINE detects 118
real bugs (FNR: 14.5%) in the programs. While UNIFORM de-
tects only 33 bugs (FNR: 76.1%), SELECTIVE effectively de-

BASELINE SELECTIVE UNIFORM
Program LOC Bug T F T F T F
SM-1 0.5K 28 28 18 28 15 13 5
SM-2 0.8K 2 2 16 1 4 0 0
SM-3 0.7K 3 3 3 3 3 0 0
SM-4 0.7K 10 10 6 10 6 6 0
SM-5 1.7K 3 3 6 3 6 0 0
SM-6 0.4K 1 0 0 0 0 0 0
SM-7 1.1K 2 2 32 0 2 0 0
BIND-1 1.2K 1 1 35 1 33 0 0
BIND-2 1.7K 1 1 45 0 41 0 0
BIND-3 0.5K 1 1 4 0 1 0 0
BIND-4 1.1K 2 2 0 0 0 0 0
FTP-1 0.8K 4 4 13 4 3 0 0
FTP-2 1.5K 1 1 7 1 6 0 3
FTP-3 1.5K 24 24 25 23 17 7 12
polymorph-0.4.0 0.7K 10 10 6 3 6 0 6
ncompress-4.2.4 1.9K 12 0 10 4 0 0 0
129.compress 2.0K 7 7 34 7 14 4 7
spell-1.0 2.2K 1 0 0 0 0 0 0
man-1.5h1 4.7K 6 5 60 1 28 0 13
256.bzip2 4.7K 3 3 149 3 21 3 21
gzip-1.2.4a 8.2K 13 11 87 8 34 0 24
bc-1.06 17.0K 2 0 57 0 10 0 9
sed-4.0.8 25.9K 1 0 64 0 14 0 4
Total 138 118 677 100 264 33 104

TABLE I
THE NUMBER OF ALARMS IN INTERVAL ANALYSIS

Target Feature Property Type Description

Loop

Null Syntactic Binary Whether the loop condition contains nulls or not
Const Syntactic Binary Whether the loop condition contains constants or not
Array Syntactic Binary Whether the loop condition contains array accesses or not

Conjunction Syntactic Binary Whether the loop condition contains && or not
IdxSingle Syntactic Binary Whether the loop condition contains an index for a single array in the loop

IdxMulti Syntactic Binary Whether the loop condition contains an index for multiple arrays in the loop
IdxOutside Syntactic Binary Whether the loop condition contains an index for an array outside of the loop

InitIdx Syntactic Binary Whether an index is initialized before the loop
Exit Syntactic Numeric The (normalized) number of exits in the loop
Size Syntactic Numeric The (normalized) size of the loop

ArrayAccess Syntactic Numeric The (normalized) number of array accesses in the loop
ArithInc Syntactic Numeric The (normalized) number of arithmetic increments in the loop

PointerInc Syntactic Numeric The (normalized) number of pointer increments in the loop
Prune Semantic Binary Whether the loop condition prunes the abstract state or not
Input Semantic Binary Whether the loop condition is determined by external inputs
GVar Semantic Binary Whether global variables are accessed in the loop condition

FinInterval Semantic Binary Whether a variable has a finite interval value in the loop condition
FinArray Semantic Binary Whether a variable has a finite size of array in the loop condition
FinString Semantic Binary Whether a variable has a finite string in the loop condition

LCSize Semantic Binary Whether a variable has an array of which the size is a left-closed interval
LCOffset Semantic Binary Whether a variable has an array of which the offset is a left-closed interval
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the loop

Library

Const Syntactic Binary Whether the parameters contain constants or not
Void Syntactic Binary Whether the return type is void or not

Int Syntactic Binary Whether the return type is int or not
CString Syntactic Binary Whether the function is declared in string.h or not

InsideLoop Syntactic Binary Whether the function is called in a loop or not
#Args Syntactic Numeric The (normalized) number of arguments

DefParam Semantic Binary Whether a parameter are defined in a loop or not
UseRet Semantic Binary Whether the return value is used in a loop or not

UptParam Semantic Binary Whether a parameter is update via the library call
Escape Semantic Binary Whether the return value escapes the caller

GVar Semantic Binary Whether a parameters points to a global variable
Input Semantic Binary Whether a parameters are determined by external inputs

FinInterval Semantic Binary Whether a parameter have a finite interval value
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the arguments

#ArgString Semantic Numeric The (normalized) number of string arguments

Fig. 5. Features for typical loops and library calls in C programs

B. Effectiveness of Our Approach

We evaluate the effectiveness of our approach by compar-
ing precision of SELECTIVE to that of the other analyzers,
BASELINE and UNIFORM. We use cross-validation, a model
validation technique for assessing how the results of a statis-
tical analysis will generalize to new data. We show the results
from three types of cross-validation: leave-one-out, 2-fold, and
3-fold cross-validation.

1) Leave-one-out Cross-validation: This is one of the most
common types of cross-validation, which uses one observation
as the validation set and the remaining observations as the
training set. In case of the interval analysis, for example,
among the 23 benchmark programs, one program is used
for validating and measuring the effectiveness of the learned
model, and the other remaining 22 programs are used for
training.

Table I shows the results of the leave-one-out cross-
validation for the interval analysis. We measured the number of
true (T) and false (F) alarms from BASELINE, UNIFORM, and
SELECTIVE. In terms of true alarms, BASELINE detects 118
real bugs (FNR: 14.5%) in the programs. While UNIFORM de-
tects only 33 bugs (FNR: 76.1%), SELECTIVE effectively de-

BASELINE SELECTIVE UNIFORM
Program LOC Bug T F T F T F
SM-1 0.5K 28 28 18 28 15 13 5
SM-2 0.8K 2 2 16 1 4 0 0
SM-3 0.7K 3 3 3 3 3 0 0
SM-4 0.7K 10 10 6 10 6 6 0
SM-5 1.7K 3 3 6 3 6 0 0
SM-6 0.4K 1 0 0 0 0 0 0
SM-7 1.1K 2 2 32 0 2 0 0
BIND-1 1.2K 1 1 35 1 33 0 0
BIND-2 1.7K 1 1 45 0 41 0 0
BIND-3 0.5K 1 1 4 0 1 0 0
BIND-4 1.1K 2 2 0 0 0 0 0
FTP-1 0.8K 4 4 13 4 3 0 0
FTP-2 1.5K 1 1 7 1 6 0 3
FTP-3 1.5K 24 24 25 23 17 7 12
polymorph-0.4.0 0.7K 10 10 6 3 6 0 6
ncompress-4.2.4 1.9K 12 0 10 4 0 0 0
129.compress 2.0K 7 7 34 7 14 4 7
spell-1.0 2.2K 1 0 0 0 0 0 0
man-1.5h1 4.7K 6 5 60 1 28 0 13
256.bzip2 4.7K 3 3 149 3 21 3 21
gzip-1.2.4a 8.2K 13 11 87 8 34 0 24
bc-1.06 17.0K 2 0 57 0 10 0 9
sed-4.0.8 25.9K 1 0 64 0 14 0 4
Total 138 118 677 100 264 33 104

TABLE I
THE NUMBER OF ALARMS IN INTERVAL ANALYSIS
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char arr[10]; 
int size = positive_input(); 
for (i = 0; i < size; i++) 
arr[i] = 1; 

arr[i] = 0; 

for(i = 0; arr[i]; i++)
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char arr[10]; 
int size = positive_input(); 
for (i = 0; i < size; i++) 
arr[i] = 1; 

arr[i] = 0; 

for(i = 0; arr[i]; i++)

유해한�순환문�
- 종료�조건이�외부�입력에�의존�
- 순환문�밖에�있는�배열의�인덱스�
- …

무해한�순환문�
- 종료조건에서�Null�을�검사�
- 유한한�문자열을�순환�
- 전역변수를�안씀�
- …
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char arr[10]; 
int size = positive_input(); 
for (i = 0; i < size; i++) 
arr[i] = 1; 

arr[i] = 0; 

for(i = 0; arr[i]; i++)

다행: 발견된 버그 하나를 고치면 나머지는 자연스레 해결

8



실험�결과

• 23�개�프로그램,�버퍼오버런�분석�

• 대상�:�순환문,�라이브러리�호출
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실험�결과

• 13�개�프로그램,�포맷�스트링�분석�

• 대상�:�라이브러리�호출
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정리

• 불필요한�안전성을�조심스럽게�선별적으로�포기�

• 기존�버그�데이터�+�분석결과를�학습하여
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program states

error states

sound unsoundselectively�unsound

program states

error states

program states

error states



•안전,�정확,�빠른�정적�분석의�핵심:�선별적�

•예비�분석을�이용하여�선별적으로�정확하게�[PLDI’14,�TOPLAS’16]�

•기계�학습을�이용하여�선별적으로�정확하게�[SAS’16]�

•기계�학습을�이용하여�선별적으로�안전하게�[ICSE’17]

결론
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scalability precision



•안전,�정확,�빠른�정적�분석의�핵심:�선별적�

•예비�분석을�이용하여�선별적으로�정확하게�[PLDI’14,�TOPLAS’16]�

•기계�학습을�이용하여�선별적으로�정확하게�[SAS’16]�

•기계�학습을�이용하여�선별적으로�안전하게�[ICSE’17]

결론
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