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ABSTRACT

Real-world software is usually built on top of other software pro-
vided as packages that are managed by package managers. Package
managers facilitate code reusability and programmer productivity
but incur significant software bloat by installing excessive depen-
dent packages. This “dependency hell” increases potential security
issues and hampers rapid response to newly discovered vulnerabili-
ties. We propose a package-oriented debloating framework, PacJam,
for adaptive and security-aware management of an application’s
dependent packages. PacJam improves upon existing debloating
techniques by providing a configurable fallback mechanism via
post-deployment policies. It also elides the need to completely spec-
ify the application’s usage scenarios and does not require runtime
support. Moreover, PacJam enables to rapidly mitigate newly dis-
covered vulnerabilities with minimal impact on the application’s
functionality. We evaluate PacJam on 10 popular and diverse Linux
applications comprising 575K-39M SLOC each. Compared to a state-
of-the-art approach, piecewise debloating, PacJam debloats 66% of
the packages per application on average, reducing the attack sur-
face by removing 46% of CVEs and 69% (versus 66%) of gadgets,
with significantly less runtime overhead and without the need to
install a custom loader.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
• Security and privacy → Software security engineering; Vul-
nerability scanners.
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1 INTRODUCTION

The essence of software debloating is the removal of code artifacts
that are not needed for certain use-cases of an application. In recent
years, it has emerged as a promising approach to hardening security
by removing excess code [13, 14, 24, 33, 35, 37, 39, 42], which can
be done at various granularities of code artifacts such as basic
blocks [39], functions [13], or groups of functions [37].

Software debloating has not gained widespread use despite its
security benefits. We argue that a debloating technique must simul-
taneously satisfy the following criteria to be practical: i) it must
provide a configurable fallback mechanism, ii) it must not require
the complete specification of all usage scenarios, and iii) it must
not require runtime support. As shown in Table 1, however, none
of the existing techniques meet all of these desired criteria.

Since debloating techniques cannot be perfect1, they should have
a fallback mechanism to handle the execution of the application
when debloated code is required. Moreover, the mechanism should
be configurable; as we argue in Section 3.2, users may have different
requirements on fallback mechanisms for different applications. A
recent technique, BlankIt [33] provides a fallback mechanism, but
it is not configurable. Moreover, it needs runtime support for dy-
namic binary instrumentation using Pin [30], which introduces high
performance overhead [54] and various compatibility issues [19],
hindering its use in a real-world deployment.

Most existing debloating techniques do not provide any fall-
back mechanism. Instead, they require a specification of expected
application usage scenarios (usually in the form of test cases) so
that the application can be trimmed to include only code needed for

the specified usage scenarios. However, it is difficult to anticipate

1Perfect debloating corresponds to dead-code elimination. The debloating techniques
we are concerned with may alter the application’s functionality by removing live code,
i.e., code that is needed by an execution.
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all possible usage scenarios of an application. Piecewise debloat-
ing [37] and tree shaking for JavaScript 2 avoid this requirement by
using a static dependency graph. However, the dependency graph
may be unsound for real-world applications [40]. Consequently, the
trimmed applications may fail to execute as a result of aggressively
debloating the necessary code.

Furthermore, none of the existing techniques provide support for
automated rapid security response by neutralizing newly-discovered
but unpatched vulnerabilities. This is a growing problem as shown
by recent studies that there is a considerable delay between the pub-
lic disclosure of vulnerabilities and the issue of patches [25, 29, 31].

In this paper, we propose PacJam, a package-level debloating
framework that overcomes the above limitations. Existing tech-
niques debloat a single target program at a time whereas most
modern applications are built atop tens or even hundreds of soft-
ware packages. Installing and updating such applications on end-
users’ machines is automated by package managers (e.g., APT for
Debian Linux, Homebrew for MacOS, NPM for JavaScript, PIP for
Python, etc.). Package managers play an instrumental role in man-
aging dependencies and conflicts between packages. For example,
Chromium version 57.0 for Linux directly depends on 39 other
packages. The APT package manager resolves all the indirectly
dependent packages and eventually installs 298 packages.

Package-level software bloat leads to numerous security prob-
lems besides space and performance issues. First, end-users are
exposed to many potentially vulnerable packages installed under
the hood. Second, malicious actors can cause widespread damage
through popular dependent packages3. Third, since each package is
typically developed by a different vendor, it is challenging to keep
track of and rapidly handle new vulnerabilities, especially when
multiple packages are involved. For example, a recent vulnerability
in VLC, a widely used media player, turned out to be a problem in a
third-party package that is only used when video files in a certain
format (.mkv) are played. The bug report was finally resolved a
month after its public disclosure4. Package-level bloat causes nu-
merous other complications, including larger software footprints,
inefficient dependency installations, and complex inter-package
dependencies that often result in dependency conflicts when they
are updated.

We argue that debloating at the package level enables a generic
debloating solution that is applicable to a wide range of applica-
tions. The resulting technique can be easily integrated into existing
package managers, enabling it to be transparent and flexible to
users. Moreover, as we show in this work, it allows us to develop
a practical system for providing an automated rapid response to
newly-discovered and unpatched vulnerabilities—a growing prob-
lem that is ignored by all existing debloating techniques.

First, PacJam removes all statically unreachable packages. These
are packages that are included in the application but not in its static
call graph. Our implementation uses SVF, a static value-flow ana-
lyzer, to construct such a call graph. On average, this removes 58%
of the packages per application, confirming another recent study

2https://developers.google.com/web/fundamentals/performance/optimizing-
javascript/tree-shaking.
3https://zd.net/33Ie3z3
4https://trac.videolan.org/vlc/ticket/22474

showing that most applications bear unnecessary dependencies5.
This enables PacJam to be usable even in the absence of test cases.

Second, if an application has a set of common usage scenarios—i.e.,
application use-cases, PacJam uses a tracer to monitor the appli-
cation and collect packages that are exercised in those use-cases.
Packages that are statically reachable but not exercised are removed.
This removes another 8% of the packages per application on aver-
age, and 65% of the packages in the case of Firefox, one of our larger
benchmarks on which SVF times out. Unlike existing approaches,
the availability of usage scenarios is an optimization rather than
a requirement. In the absence of common usage scenarios, Pac-
Jam can debloat all the packages and load on demand (based on a
user-configurable policy) those packages that are needed during
the application use. PacJam achieves this by using shadow packages

in the place of debloated packages. Shadow packages have the same
interface structure as the original but only contain a small piece
of code that performs management tasks. When a user requires a
certain package that was not initially provided, the shadow pack-
age handles the request based on a flexible system configuration,
which may either permit various modes of on-demand installation
or discard the request.

Shadow packages offer PacJam flexibility in the choice of static
analyses and usage scenarios. For instance, a fast but conserva-
tive static analysis that preserves unnecessary packages can be
supplemented by usage scenarios to remove them. Similarly, Pac-
Jam permits aggressive static analyses that may remove necessary
packages. Indeed, SVF offers a broad range of static analyses with
different costs, scalability, precision, and soundness issues. Pac-
Jam can effectively leverage different analyses in SVF based on
application characteristics.

Furthermore, shadow packages allow PacJam to automate the
secure dependency lifecycle: Whenever a new vulnerability is re-
ported, PacJam efficiently replaces the offending package with its
shadow version, and restores it later once the patch is available.
By doing so, PacJam can rapidly handle newly discovered security
issues that usually require substantial delays for patches (e.g., 1.5
months on average, according to a recent study [25]).

Finally, unlike existing approaches, PacJam does not require cus-
tom runtime support. It relies on the existing linker and loader.
PacJam thus provides all the desired features of an effective and
practical debloating technique that also supports security response.
The PacJam framework is open-sourced and the benchmarks are
publicly available to foster reproducibility and further advances in
the field 6. In summary, this paper makes the following contribu-
tions:
• We propose a package-oriented debloating framework, PacJam,
which provides adaptive and security-aware package manage-
ment. PacJam also provides a configurable fallback mechanism
via post-deployment policies.

• We introduce shadow packages that allow us to automate the
secure dependency lifecycle. They also afford PacJam flexibility in

5https://ubuntu.com/blog/we-reduced-our-docker-images-by-60-with-no-install-
recommends
6Code: https://github.com/ppashakhanloo/pacjam, Docker Image: https://rb.gy/nzcuc9,
Data: https://rb.gy/0ffzjp
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Table 1: Comparison of PacJam to other debloating techniques. For each of the features, we indicate whether the technique fully

supports (✓), partially supports (#), or does not support (✗) the feature. (*)Testcases are optional but greatly help in increasing

debloating effectiveness.

System Granularity

Configurable

Fallback Mechanism

Complete Testcases

Not Needed

No In-process

Runtime Support

Supports

Security Response

BinTrimmer [39] Basic Blocks ✗ ✓ ✓ ✗
BlankIt [33] Function groups # ✓ ✗ ✗
Chisel [24] Instructions ✗ ✗ ✓ ✗
Occam [32] Basic Blocks ✗ ✗ ✓ ✗

Piece-Wise [37] Function groups ✗ ✓ ✗ ✗
Razor [35] Basic Blocks ✗ ✗ ✓ ✗

PacJam Packages ✓ ✓* ✓ ✓

the choice of static analyses and usage scenarios for determining
the reachable packages.

• We evaluate PacJam on ten popular and diverse Debian applica-
tions available through apt public repository, including Chrome
and Firefox, comprising 575K-39M SLOC over 19–479 packages.
Our evaluation shows that, on average, we can debloat 66% of
the packages per application, which reduces the attack surface
by removing 46% of CVEs and 69% of gadgets.

• We design and implement autorespond, a monitoring tool that
automatically identifies packages containing newly discovered
vulnerabilities and allows to disable their execution until a patch
becomes available. Our evaluation shows that the approach taken
by autorespond is effective at mitigating vulnerabilities with
minimal impact on application functionality.

2 ILLUSTRATIVE OVERVIEW

The overall architecture of PacJam is depicted in Figure 1. It takes
as input the metadata (all dependent packages) of the application
to be debloated. Initially, PacJam determines a set of required pack-
ages for the application based on a reachability analyzer. PacJam
installs only the required packages and uses dummy shadow pack-
ages for all other dependent packages. These shadow packages do
not provide any functionality but maintain the application binary

interface (ABI) to satisfy system load-time requirements. Every
shadow package contains a simple stub that enables PacJam to
handle executions that require the corresponding package.

Shadow packages play two key roles: fallback mechanism and
security response. If the execution of an application flows into a
shadow package, then depending on a configurable policy, PacJam
seamlessly installs either the corresponding original package or a
safer sanitized [41] version which uses runtime monitoring to en-
hance security. Also, a package containing an unpatched vulnerabil-
ity can be rapidly disabled on demand, i.e., replaced with a dummy
shadow package, and can only be enabled once the patch for the cor-
responding vulnerability is available.We also provide autorespond,
a tool that automatically identifies newly discovered but unpatched
vulnerabilities and corresponding packages. The information, in
conjunction with PacJam, provides a secure dependency lifecycle.

We next elucidate each component of PacJam using vlc media
player7 as our running example.

7https://www.videolan.org/vlc/index.html

2.1 Dependency Graph

PacJam maintains the information of all dependencies between
packages ( 1 in Figure 1). Direct dependencies of each package
are available from the specified application metadata. From this
information, PacJam computes all indirect dependencies.

In our example, vlc 3.0.2 for Debian has 479 dependent packages
overall, reachable from its 10 direct dependencies by apt. Among
them, 324 packages are identified as reachable from vlc by SVF, a
sophisticated static analyzer. By doing so, PacJam also reduces the
attack surface of vlc by eliminating 122 of the known CVEs.

2.2 Usage Scenario Database

PacJam captures application features by observing which depen-
dent packages the application uses under each usage scenario ( 2
in Figure 1). We construct a usage scenario database for each applica-
tion from the following sources: (a) common use cases, (b) questions
from Stack-Overflow, (c) application tutorials, and (d) developer-
provided test suite. In the case of vlc, we collected 299 media files
in an attempt to include as many supported media formats we could
identify. Among the 155 dependent packages with shared libraries
identified by the static analyzer, only 134 dependent packages with
shared libraries are exercised to play all the collected media files.
These numbers confirm prior study8 that applications installed by
existing package managers such as apt install more packages than
required. We further analyze the reasons for it in Section 4.

The collected usage scenarios are used to eliminate dynamically
unreachable packages. Suppose the user wants to install vlc. Pac-
Jam installs only 134 packages and uses shadow packages for all
the other dynamically unreachable packages. By doing so, PacJam
can further prevent all potential vulnerabilities in those packages,
such as another 42 of the known CVEs in the case of vlc.

As we show in Section 4, for most users, the default installation
provided by PacJam works without requiring the execution of any
shadow packages. However, cases where an input requires a shadow
package execution are handled using our shadow package database,
as explained next.

2.3 Shadow Package Database

For each package, PacJam generates the shadow and sanitized ver-
sions along with the original version ( 4 in Figure 1). The shadow
package is a stripped-down version and does not provide original

8https://ubuntu.com/blog/we-reduced-our-docker-images-by-60-with-no-install-
recommends
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Figure 1: Overview of the PacJam Framework.

application functionalities. Also, it contains a stub that allows seam-
less execution of the application in cases where the code in the
corresponding original package is required.

PacJam installs shadow packages for all dependencies of an ap-
plication except for the required packages (Section 2.2). Thus, in
the beginning, the application loads original versions of required
packages, and shadow versions for the other packages. In conse-
quence, the application has significantly reduced attack surface at
runtime and does not load more packages under usual usage scenar-
ios. In the vlc example, the system initially installs 134 packages
to support all the usage scenarios. For the remaining 187 packages,
it instead installs the shadow version of the library.

Finally, it allows automating the secure dependency lifecycle.
For instance, suppose vlc had been installed with full support for
all usage scenarios. Whenever a new vulnerability is reported, the
package installer simply substitutes some dependent packages with
their shadow versions, effectively preventing an attack. The cor-
responding packages can be re-enabled once the patched versions
are available.

2.4 Post-Deployment Policy

If an input requires the execution of a shadow package, our stub in
the shadow package loads the sanitized version of the package and
propagates execution to it ( 3 in Figure 1). The sanitized version has
the same functionalities as the original version but is instrumented
with a runtime monitoring mechanism [41]. It thereby enhances
security at the expense of runtime overhead. For example, if the
sanitized version of libebml is used instead of the original libebml,
the average runtime overhead over all the test cases is less than
200ms, and over the test cases specifically using this package is less
than 1s. This default behavior of installing sanitized packages can
be changed by using various post-deployment policies (Section 3.2).

Suppose a new vulnerability such as CVE-2019-136159 is discov-
ered and autorespond identifies that the corresponding vulnerable

9https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13615

package is libebml. In this case, autorespond informs our package
installer about libebml, which will be disabled by replacing it with
the corresponding shadow version and setting a flag in the shadow
package database. If a user plays a (potential exploit) .mkv file, the
shadow package forces the program execution to safely stop at
the beginning of the shadow package (i.e., the first invoked func-
tion in libebml), or passes the execution to its sanitized package,
depending on the policy.

3 DESIGN AND IMPLEMENTATION

In this section, we explain the design of various components of
the PacJam framework.

3.1 Reachability Analyzer

The reachability analyzer’s goal is to determine the set of packages
required by common usages of the given application ( 5 in Figure 1).
Using static and dynamic reachability, we compute the transitive
closure of all the packages that the application depends on.

Static Reachability Analysis. We construct a static analysis for
reachability using SVF [44], a tool for interprocedural value-flow
analysis of C and C++ programs. Our analysis constructs a function
call-graph and then traverses it starting from the application’s main
function to find all the reachable functions.

We address two challenges with static reachability. First, in order
to create a complete call-graph, our analysis must handle func-
tion pointers and externally-defined code, i.e., code in shared li-
braries. To resolve function pointer targets, for smaller programs,
e.g., wget, we use Andersen’s pointer analysis and for larger pro-
grams, e.g., firefox, we use less precise but more scalable type-
based analysis. To handle shared libraries, we generate LLVM bit-
code for all of an application’s dependent shared libraries and link
it with the application, effectively simulating static linking which
gives SVF a whole-program view. Secondly, we use dynamic tracing,
as explained below, to capture flows into shared libraries that are
explicitly loaded using runtime code-loading mechanisms [15].

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13615


Dynamic Reachability Tracing. As we show in Section 4.1, for
most of the applications, we can easily find common usage scenarios.
Our implementation traces packages reached at runtime for each
test case by tracing actual program execution flow into shared
libraries. To capture this dynamic package usage, we instantiate
our shadow packages with a special tracing post-deployment policy.
Under this policy, invocations to a shadow library are trapped,
recorded, and then forwarded to the respective real library so that
the application can continue execution. As a result, our system is
able to effectively monitor all program flows at runtime to gather a
complete picture of application functionality usage.

Unlike most of the existing debloating techniques [24, 32, 35],
computing required artifacts is not a strict requirement for PacJam

but rather an optimization because of our configurable PD policies. If
more accurate static analysis results or usage scenarios are provided,
the runtime overhead for the fallback mechanism can decrease.

3.2 Package Installation

PacJam installs the packages that are determined as reachable by
the reachability analyzer, and based on the post-deployment policy
( 6 in Figure 1). For each of the remaining dependencies, PacJam
places a shadow package onto the system.

Shadow Packages. The goal of using shadow packages is to re-
move unwanted functionality but maintain the ABI between a pack-
age and its dependencies. Binaries linked against shared libraries
reserve address space for references in shared libraries that the
loader resolves at runtime. On POSIX-like systems, when an exe-
cutable boots, the loader pulls all of its dependencies into process
memory space for reference resolution and code execution. As such,
any dependency debloating system must either rewrite an applica-
tion to change its ABI by removing all references to shared removed
dependencies, or provide some mechanism to satisfy the ABI with-
out keeping the original libraries on the system. The former results
in a smaller binary whose executions cannot flow into removed
libraries. However, this process is rigid, and does not seamlessly
allow for post-deployment adjustments; namely, adding and remov-
ing dependencies to adjust to changes in the security profiles of
each package requires additional rewriting. PacJam instead cre-
ates gutless ABI-compatible mock libraries, which we term shadow

libraries that belong in part to larger shadow packages.
We create the shadow package from any given original package

by removing all code inside each function body and replacing it with
hooks to our secure runtime framework. The hooks in the shadow
packages interact with the package installer to implement various
post-deployment policies, as explained below. These shadow pack-
ages will be stored in our package database for our package installer
to use when processing installation requests.

Shadow libraries built in this manner integrate cleanly into stan-
dard POSIX build environment; we do not require modifications
to the linker and loader to build applications. This allows a user
to drop any POSIX application into our framework. Furthermore,
we address post-deployment executions into debloated packages
with a series of user-specified post-deployment policies that trap and
safely handle runtime faults, i.e., executing debloated packages.

Post-Deployment Policies (PD Policies). Shadow libraries allow
customizing installations through the use of PD policies that trap

App

libX

libY

libZ libZ

Trap

Permissive 
/ Decay

Restart App

HaltStrict

On-demand Package Installer

Onetime
S/O

S/O

libZ

Figure 2: Post-Deployment Policies and Shadow Package. S/O

stands for sanitized or original package.

executions into removed functionality, called fault, and respond
based on one of the following modes:

• Strict mode: Faults are treated as undesired behavior, meant to
force an application to be used as defined by the usage scenarios.
Shadow packages are configured to force the program execu-
tion to stop; therefore, any security vulnerabilities in uninstalled
packages are prevented.

• Onetime mode: Faults are treated as requests for additional
onetime application functionality. In this mode, PacJam traps
faults in shadow packages and prompts the user to allow the
installation of the corresponding application package. If the user
allows, then the package will be installed, and the application
will be restarted. After the application exits, the package will be
replaced with the shadow package. The user will be prompted
every time the application requires a shadow package.

• Decay mode: In this mode, faults are also treated as requests
for additional application functionality. PacJam traps faults into
shadow packages and issues a request to the runtime environ-
ment installer to install the original library (without prompting
the user). PacJam reboots the application once the original li-
brary has been installed. Furthermore, every package installed
through shadow packages is monitored such that if the package
is not used in the last 𝑁 invocations of the application, it will be
replaced with the corresponding shadow package.

• Permissivemode: Thismode is similar to Decaymode. However,
there is no decay and no on-demand installed packages will be
reverted to shadow packages.

Furthermore, all the above modes can be configured such that the
additional packages can be either the unmodified original package
(𝑂) or a sanitized version (𝑆) with additional runtime checks (which
we use as the default choice).

For each of our deployment policies, program executions that
flow into removed libraries instead flow into our isolated post-
deployment hooks which safely trap program execution and exit.
We elucidate this process in Figure 2. The modes that trigger the in-
stallation of shadow packages can be configured to install either the
original (𝑂) or sanitized (𝑆) version of the package; however, each
fault may only install a library present in the original dependencies,
and thus does not introduce additional security issues.

3.3 Secure Dependency Lifecycle

PacJam can realize continuous secure dependency lifecycle by inte-
grating with existing vulnerability databases or discovering systems



such as the CVE database, GitHub security alerts10, or OSS-Fuzz11.
While the initial debloating improves security by preventing 0-day
attacks in removed packages, new vulnerabilities in previously
“safe” packages could continue to be discovered. In this case, sys-
tems that “protect then deploy” are unable to respond promptly to
newly discovered vulnerabilities [25]. These n-day attacks—where
a known vulnerability and patch exists for a package but developers
have not yet responded and applied a fix—require system adminis-
trators and/or developers to immediately respond, or disable the
application until the patch is applied.

PacJam bridges the gap between continuing to provide an appli-
cation service with a known vulnerability and disabling the applica-
tion until such a vulnerability is fixed. Since PacJam does not require
any modifications to an application, users can post-deploy disable a
vulnerable package by removing it from the system and replacing
it with the corresponding shadow package. Instead of completely
disabling the application, we simply remove a dependency, and a
subset of its functionality as a result. As discussed earlier, PacJam
traps executions into this disabled package and safely exits the
application. When the vulnerable package is patched, users simply
re-enable this functionality by installing the patched package and
removing the shadow package from the system.

Since maintaining security post-deployment is a continuous
process, we provide a suite of automation tools called autorespond,
that maintains a secure dependency environment. It can continuously
scan for open vulnerabilities in installed packages and automatically
replace them with shadow packages until a patch is available.

We illustrate how autorespond works in Figure 3. autorepond
implements three batch-running processes, respond, scan, and
install, that maintain up-to-date vulnerability information about
packages installed on the system and respond to open threats—we
anticipate that Linux system administrators will use this software
daily to address packages vulnerable to n-day attacks. In essence,
autorespond automates the secure dependency lifecycle (see Sec-
tion 3.3) on Linux-like systems.

Vulnerability Collection. To collect package-level vulnerability
information, respond subscribes to notification systems such as
GitHub security alerts, which sends push notifications about the
packages that contain newly found vulnerabilities. We also provide
a crawler for CVE databases. The crawler parses CVE entries’ de-
scriptions to identify the vulnerable packages. The CVE entries are
associated with source packages, from which often multiple binary
packages are built. We only consider binary packages containing C
shared libraries, which we refer to as Visible Dependencies.

Through this process, respond maintains an up-to-date vulner-
ability database at package-level granularity, a key component of
package-oriented debloating.

Package Analysis. scan collects information from three key
sources, namely, PacJam-installed packages, apt package manager,
and the vulnerable package database, to determine which packages
to remove from and add to the system. Since PacJam-built packages
are opaque to system administrators and apt, the package installer
tracks the set of original and shadow packages on the system and
keeps it in a PacJam package database.
10https://docs.github.com/en/github/managing-security-vulnerabilities
11https://google.github.io/oss-fuzz
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PacJam relies on the apt package manager for installed package
version information which is useful for aligning packages on the
system with information from the vulnerable package database.
Using these two sources of information, scan builds two package
sets: a remove set, for original packages installed on the system
that have open vulnerabilities, and an add set, for shadow packages
that have since received patches addressing their CVEs.

Installation. install processes the remove and add sets from
scan: original packages in the remove set are replaced by shadow
packages, and shadow packages in the add set are replaced by orig-
inal packages. At first glance, this process might seem straightfor-
ward; however, patched packages are likely new versions of previ-
ous packages and may be in conflict with the system. In these cases,
PacJam forwards installation requests to apt for conflict resolution,
and then manually issues the installations of shadow packages from
its own package database.

4 EVALUATION

In order to assess the effectiveness of PacJam as a security-oriented
debloating technique, we aim to evaluate each component of the
framework as follows:
• RQ1. Effectiveness of Static Reachability: How effective is
PacJam at debloating real-world applications in the absence of
test cases?

• RQ2. Effectiveness of Dynamic Reachability: How effective
is PacJam at debloating real-world applications when their com-
mon usage scenarios are available?

• RQ3. Effectiveness of Fallback Mechanism: How effective is
PacJam’s fallback mechanism in handling cases that are missed
by the static and dynamic reachability analyses?

• RQ4. Effectiveness of autorespond:How effective is PacJam at
providing rapid security response to unpatched vulnerabilities?

4.1 Evaluation Methodology

Benchmark Suite. We evaluate PacJam on 10 widely-used Linux
applications shown in Table 2. They were selected from two do-
mains: (1) Linux command-line tools, e.g., wget, that usually have
a small number of features by following the standard Linux devel-
opment philosophy “do one thing well”; and (2) popular graphical
user applications, e.g., firefox, that are widely used by both ca-
sual and expert users. These applications have bountiful feature
sets with a large number of dependent packages, and thereby have
ample room for security improvements through package-oriented

https://docs.github.com/en/github/managing-security-vulnerabilities
https://google.github.io/oss-fuzz


Table 2: Benchmark Statistics. KLOC reports the number of lines of source code for each application and its dependencies.

Direct Deps is the number of direct dependencies, and All Deps is the total number including direct and transitive dependencies

installed by apt. Visible Deps are packages that PacJam can disable, i.e., packages with shared libraries (see Section 3.3).

Benchmark (Debian) KLOC Direct Deps All Deps (𝐴) Visible Deps (𝑉 ) 𝑉 /𝐴 Test Cases Description

bc-1.07.1 903 4 19 14 73.7% 257 GNU arbitrary precision calculator
gawk-4.2.1 1,252 5 20 15 75.0% 329 Pattern scanner and processor
wget-1.20.1 4,589 9 65 39 60.0% 461 Retrieving files from the web
curl-7.64.0 5,794 3 77 50 65.0% 661 Tool for transferring data
git-2.20.1 575 13 92 56 60.9% 740 Revision control system

xpdf-3.04 11,600 13 141 92 65.2% 100 Portable PDF reader
firefox-68.2 25,819 35 260 187 72.0% 500 Web browser
chromium-57 38,998 39 298 152 51.0% 500 Web browser
gimp-2.10.8 26,653 50 376 250 66.5% 121 Advanced image manipulation tool
vlc-3.0.2 24,935 10 479 321 67.0% 299 Multimedia player and streamer

debloating. All the experiments, except when compared with Piece-
Wise, are conducted on a Debian system with package dependency
information provided by the apt package manager.

Usage Scenarios. Table 2 shows the total number of test cases for
each benchmark. To reflect various use cases, we selected these test
cases frommultiple sources such as Online tutorials, StackOverflow,
and, CommandlineFu. For browsers, we collected the top 500 web-
sites from Alexa12, which we show to be adequate in Section 4.3.
For other applications, we perform a comprehensive search of vari-
ous online sources to collect relevant use cases. We provide more
details on our use case collection methodology in Appendix A.1.

Vulnerability Data. Our package vulnerability database contains
information about each package’s known vulnerabilities, i.e., CVEs,
that are collected from CVE databases.

Attack Surface. We consider the attack surface of an application
to be the number of CVEs and code reuse gadgets in its dependent
packages. We use the vulnerability data (Section ??) to obtain infor-
mation regarding CVEs. We use GadgetSetAnalyzer13 to determine
the code reuse gadgets.14

4.2 Effectiveness of Static Reachability

We measure the effectiveness of PacJam at removing statically un-
reachable packages in terms of the number of removed dependen-
cies, CVEs, and gadgets. We then compare packages debloated by
PacJam with packages debloated by the state-of-the-art debloating
technique, Piece-Wise [37].

We report the results of our static reachability analysis in Table 3.
All applications contain a significant number of statically unreach-
able packages. On average, PacJam removes 58% of packages across
all of the applications. This number is significantly less than the
number of actually installed packages by the baseline. For instance,
in git, only 29 out of the 56 visible packages are even potentially

reachable. Interestingly, most of these statically unreachable pack-
ages are part of an application’s indirect dependencies, i.e., packages
that developers must include to use one of its direct dependencies.
For example, all of the 27 statically unreachable git packages are

12https://www.alexa.com
13https://github.com/michaelbrownuc/GadgetSetAnalyzer
14As shown by recent work [16], GadgetSetAnalyzer provides a more accurate measure
of the number of gadgets compared to commonly used tools such as ROPGadget.

indirect dependencies. The results suggest that most indirect depen-
dencies are in fact software bloat. For example, git directly depends
on libcurl3-gnutls—a rich client-side transfer library—which in
turn depends on librtmp1—a high-quality media streaming proto-
col. Even though git requires libcurl3-gnutls for SSL connec-
tion, it does not use the streaming protocol provided by librtmp1.
While one might blame a developer for the vulnerabilities and code
bloat within their application, these results suggest that much of
that responsibility lies beyond the developer’s direct control.

Even long-maintained small utilities are not immune to depen-
dency bloat. For instance, bc—a streamlined Linux command-line
tool with 29 years of development—contains 10 statically unreach-
able dependencies, one of which is libncurses6, a direct depen-
dency. Curiously, we suspected this might be a bug and reported
it to the bc maintenance team, who confirmed that it was indeed
unnecessary to provide bc’s functionality and exists as part of an
outdated automated build setup, rather than any usage in bc itself.

Next, we compare PacJam against the state-of-the-art baseline,
Piece-Wise [37]. We compile all the dependencies of the packages
with the Piece-Wise compiler in the default mode and measure the
number of removed unique15 gadgets and break them down into
ROP, JOP, and COP. At the time of writing this paper, the working
version of Piece-Wise was only available on Ubuntu. So, unlike
other experiments in this section that are conducted on a Debian
machine, we deploy PacJam on an Ubuntu machine with compatible
versions of the benchmark applications so that we can compare the
same set of application dependencies. Furthermore, to ensure the
correct deployment and measurement of Piece-Wise, we verify that
the function reduction percentage reported for curl in Table 4 is
similar to that reported in Table 5 in [37].

We observe that, in the absence of test cases, for the Ubuntu
version of the applications (Table 4, column 1), PacJam reduces
61% of gadgets, which is 5% less than that of Piece-Wise. Although
Piece-Wise is effective at debloating functions, the finer-grained
unit of debloating results in more runtime overhead. We discuss
the overhead more in Section 4.6.

In summary, PacJam removes an average of 58% of Debian appli-
cation dependencies, 40% of application bugs, and 66% of gadgets
by removing statically unreachable packages. It also eliminates 61%
of the gadgets for Ubuntu applications. Although PacJam removes

15See AppendixA.3.

https://www.alexa.com
https://github.com/michaelbrownuc/ GadgetSetAnalyzer


Table 3: Static package-level debloating and attack surface reduction by PacJam. The “Present in apt installation” column shows

statistics of the visible installed packages and existing number of CVEs and gadgets for each application by apt. The other

column reports the amount of reduction by PacJam for statically unreachable packages. t/o indicates SVF timeout.

Benchmark

(Debian)

Present in apt installation Reduced by PacJam (Static)

Deps (𝑉 ) CVEs (𝐶) Gadgets (𝐺) Deps (% of𝑉 ) Indirect Deps CVEs (% of𝐶) Gadgets (% of𝐺)

bc-1.07.1 14 30 21,522 10 (71%) 9 13 (43%) 12,863 (60%)
gawk-4.2.1 15 29 26,520 12 (80%) 10 16 (55%) 22,388 (84%)
wget-1.20.1 39 50 143,355 22 (56%) 22 26 (52%) 104,978 (73%)
curl-7.64.0 50 68 168,433 23 (46%) 23 22 (32%) 69,024 (41%)
git-2.20.1 56 75 164,823 27 (48%) 27 25 (34%) 122,830 (75%)
xpdf-3.04 92 154 263,879 53 (58%) 53 51 (31%) 196,095 (74%)
firefox-68.2 187 182 717,451 t/o t/o t/o t/o
chromium-57 152 513 338,005 75 (49%) 75 121 (46%) 181,334 (54%)
gimp-2.10.8 250 289 901,662 155 (62%) 149 85 (33%) 696,648 (77%)
vlc-3.0.2 321 374 1,361,996 155 (48%) 150 122 (33%) 699,309 (50%)

Average 58% 40% 66%

fewer gadgets statically compared to Piece-Wise, it imposes less
runtime overhead. Unlike other debloating tools that solely rely on
static analysis, PacJam is not susceptible to soundness issues with
SVF, as any packages that are misclassified as unreachable can still
be loaded through PD policies, evaluated in Section 4.4.

4.3 Effectiveness of Dynamic Reachability

For each application, PacJam can debloat it further by removing
dynamically unreachable packages for a given set of use cases.
We measure how many more CVEs and gadgets can be removed
via dynamic reachability after statically unreachable packages are
trimmed. We also empirically show the adequacy of the test cases
we collected for this experiment.

First, we execute all the collected test cases as described in
Section 4.1 using dynamic tracing to determine which packages are
dynamically executed. Then, we deploy PacJam in strict mode and
an initial installation with the union of all the dynamically reached
packages. We report the results of our experiment in Table 4. Even
with a large number of statically unreachable packages, applica-
tions still contain dynamically unreachable packages and benefit
from their removal. The average number of dynamically unreach-
able packages across all benchmark Debian applications is 66%,
which is an additional 8% compared to statically unreachable pack-
ages as demonstrated in Table 3. For example, in git, of the 29
potentially reachable packages, PacJam discovers that another 4
are dynamically unreachable. In contrast to statically unreachable
packages, these packages implement features that some users may
need, but may be removed for most users without adversely af-
fecting the functionality. For instance, two of git’s dynamically
unreachable packages, libgssapi-krb5-2 and libkrb5support0,
provide Kerberos authentication support, a network authentica-
tion protocol that most git users do not need.

PacJam reduces the attack surface further than static debloating,
resulting in an overall reduction of 46% of total application bugs
and 69% of gadgets. On closer inspection of the CVEs, we further
notice that 30% of these are of high severity (i.e., high CVSS). This
positively qualifies our result and shows that PacJam is effective at
reducing the attack surface of applications.
Adequacy of Collected test suites. To evaluate this, we tested collected
test suites in two different ways: (1) on unseen inputs generated by
AFL, a state-of-the-art fuzzer, and (2) on unseen inputs provided by

real users through a user-study for a PacJam-debloated application,
firefox.

Again, we deploy the applications in the strict mode. Hence, any
execution that requires trimmed packages leads to the termination
of the application. Since we are claiming that the test cases are di-
verse enough and cover the majority of the functionalities, we want
to ensure we do not encounter such terminations. For command-
line applications, we run AFL on PacJam-debloated applications
with our set of test cases as the seed inputs. The fuzzer does not find
any failure-inducing inputs in these applications after 24 hours. We
also deploy a PacJam-debloated firefox based on our test cases
consisting of the top 500 Alexa websites, and ask 8 users to use
the application as they would normally use a web browser. We do
not impose any requirements or restrictions on how they can use
the application. We observe that no runtime failures occur since all
the dependencies that are required for these users’ typical uses are
covered, even though they report performing a variety of tasks not
exercised in the training set: browsing password-protected websites,
playing live radio / TV / online games, downloading files, train-
ing and running deep neural net models in the browser (Keras.js),
changing preferences, andmanymore. Moreover, they do not report
any unexpected behavior in this version of firefox.

These two experiments show that our test cases arewell-balanced
and extensively exercise each application’s features so that PacJam
does not simply harden the application by installing too few depen-
dencies. Note that, unlike some of the existing techniques [24, 35],
PacJam does not require use cases. A user may even start with
an empty installation and install the dependencies on-demand.
Nonetheless, PacJam can take advantage of any anticipated use
cases to reduce the number of on-demand installations by starting
with a reasonable minimal installation.

Finally, we discuss how PacJam compares to Razor [35], a post-
deployment tool that aims at debloating binaries guided by users’
test cases. Unfortunately, Razor does not support shared libraries,
so it does not apply directly to the complete set of application
dependencies. One workaround is to statically build the application
with all the dependencies before running Razor on it. However, it
is not a desirable solution for real-world deployment. The most
important advantage of shared libraries is having only one copy
of the library loaded in memory even if more processes depend
on it. For static libraries, every process has its own copy of the
code, which leads to significant memory bloat. We further tried



Table 4: Comparing the attack surface reduction by PacJam in static and dynamic modes with Piece-Wise.

Benchmark

(Ubuntu)

Reduced by PacJam (Static) Reduced by PacJam (Dynamic) Piece-Wise

Uniq ROP JOP COP Uniq ROP JOP COP Uniq ROP JOP COP

bc-1.06.95 63.4% 69.3% 46.1% 28.1% 76.6% 80.1% 78.2% 74.8% 75.0% 73.7% 77.8% 77.4%
gawk-4.1.3 36.1% 38.8% 28.0% 16.0% 48.9% 58.6% 53.6% 41.5% 42.6% 41.4% 47.4% 43.1%
wget-1.17.1 44.5% 50.0% 28.0% 16.1% 59.8% 60.0% 55.1% 53.7% 56.0% 56.4% 54.8% 56.0%
curl-7.47.0 44.6% 51.3% 26.0% 11.0% 61.5% 58.8% 57.2% 48.8% 55.7% 57.2% 51.6% 49.0%
git-2.7.4 78.4% 87.1% 55.0% 35.3% 71.5% 79.8% 55.4% 35.4% -∗ - - -
xpdf-3.04 68.5% 75.5% 50.6% 39.0% 76.5% 79.1% 70.9% 72.0% 74.8% 76.0% 72.2% 71.2%
firefox-84.0.2 79.6% 83.3% 67.0% 58.3% 79.9% 83.7% 64.1% 48.7% -∗ - - -
chromium-87.0 57.6% 64.5% 33.5% 23.6% 76.8% 75.5% 63.8% 67.7% 73.1% 75.8% 63.0% 62.3%
gimp-2.8.16 71.0% 75.2% 55.7% 46.2% 78.1% 80.5% 77.2% 76.9% 79.5% 80.2% 76.2% 76.5%
vlc-2.2.2 72.4% 79.0% 52.3% 40.4% 76.9% 79.4% 71.3% 71.4% 75.0% 74.7% 76.2% 75.0%

Average 61% 67% 44% 31% 71% 74% 65% 59% 66% 67% 65% 64%
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Figure 4: Time overhead in milli-seconds of debloated vlc
by PacJam (vlcpac) and Piece-Wise (vlcpiw) when compared

with original vlc for various test cases.

to debloat the dynamically-linked binaries of the applications in
our benchmark. Unfortunately, the debloated binaries had several
segmentation faults and we could not evaluate them.

In summary, PacJam effectively debloates dynamically unreach-
able packages which we demonstrate with an adequately diverse
set of use cases. While both Razor and PacJam are capable of dy-
namic debloating, PacJam is also designed to work not only with
the directly dependent shared libraries, but also the indirect ones.

4.4 Effectiveness of Fallback Mechanism

Due to incompleteness, static and dynamic unreachability analyses
may fail to predict that some packages are required. Therefore, a
fallback mechanism is required to deal with these cases. PacJam
implements a fallback mechanism by introducing PD policies, as
described in Section 3.2. These policies allow the user to decide the
behavior of the application in face of a runtime fault. We measure
the performance overhead of permissive and compare it with the
runtime overhead that Piece-Wise incurs. Then, we compare PacJam
with the only state-of-the-art debloating approach that implements
a fallback mechanism, BlankIt [33].

First, we deploy vlc without any dynamic or static information,
i.e., we consider all the dependent packages unused and trim all
of them by replacing them with shadow packages. We choose vlc
because it is the largest application in our benchmark. Then, we
execute the trimmed vlc (vlcpac) with the complete set of use cases,

and the permissive PD policy, i.e., any required package will be
loaded on-demand during execution. Figure 4 demonstrates the
performance overhead encountered by vlcpac compared to the orig-
inal untrimmed application when executed with various test cases.
vlcpac encounters around two milliseconds delay on each test case.
This delay constitutes only 0.01% of the running time on average
over all our test cases of vlc.

In general, for each test case, the delay encountered by vlcpac
is proportional to the number of debloated packages required to
execute the test case. This can be observed by a few spikes on the
vlcpac line, which indicates that the corresponding test case required
a debloated package to be loaded. It is interesting to see that the
first test case itself loads most of the required packages. Once vlcpac
reaches a stable state, i.e., all the necessary packages are loaded, we
encounter only a small delay that is due to the initialization of the
data structures required by PD policies. This shows an interesting
use-case of self-customization: Using a permissive PD policy, a user
can customize an application according to her needs. Once satisfied,
the deployment policy can be changed to strict mode that only
incurs an insignificant overhead.

To demonstrate that such overhead is still less than the overhead
imposed by Piece-Wise, we run the same set of test cases with a
version of vlc that is trimmed by Piece-Wise (vlcpiw) and measure
the overhead as shown in Figure 4. We see that vlcpiw has a relatively
larger overhead of roughly 32 milliseconds in every invocation of
the application. This overhead constitutes 2% of the running time
on average over all the test cases. This overhead is due to the need
to walk through the dependency graph even if the corresponding
library is not used during runtime. In other words, Piece-Wise fails
to keep many of the dynamically unused functions out of memory.
Besides, Piece-Wise is susceptible to soundness issues in SVF since
it does not provide any fallback mechanisms. For instance, a bug
like issue 7016 in SVF could result in crashes in the corresponding
trimmed application as reachable code could be potentially trimmed
because of the bug. Furthermore, using a PD policy for function-
level debloating has a significant performance penalty.

Next, we briefly discuss a state-of-the-art debloating technique,
BlankIt, that implements a fallback mechanism. Unfortunately, at
the time of writing this paper, BlankIt was not compatible with our
benchmark applications. Nevertheless, we discuss the sources of
overhead in it and argue that PacJam incurs lower overhead.

16https://github.com/SVF-tools/SVF/issues/70

https://github.com/SVF-tools/SVF/issues/70
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Figure 5: CDF of functionality reduction for various applications

because of disabling vulnerable packages for high and critical sever-

ity CVEs by autorespond.

In BlankIt, once a runtime failure occurs, it enters an audit mode
that checks for memory safety. This mode is implemented via Mem-
check’s SGCheck extension. This extension reads all of the type
and variable information in the executable and shared dependen-
cies. Then, the stack and global array overrun checks are done
while compressing the in-memory representation of DWARF data
to make these memory-intensive operations feasible. These op-
erations require several range checks per memory access. These
are all computationally expensive operations that might incur an
overhead of up to 20x [33]. According to SGCheck’s manual, for
a real-world application, such as OpenOffice, it can take up to
one minute to perform the check. Besides, BlankIt uses Pin [30]
to dynamically instrument call sites which is an additional run-
time overhead of up to 1.7x [33]. In contrast, PacJam only incurs
an insignificant overhead to load the data structures that are re-
quired for PD policies; and 2-5x overhead of AddressSanitizer if the
user prefers the sanitized package instead of the unsanitized one.

In summary, our results show that PacJam-debloated applica-
tions are robust even in the absence or failure of static and dynamic
information. This also implies that PacJam has a reasonable choice
of the debloating unit, i.e., package-level, that enables us to provide
an effective and practical fallback mechanism.

4.5 Effectiveness of autorespond
In this section, we evaluate the effectiveness of autorespond to
rapidly respond to unpatched vulnerabilities. As explained in Sec-
tion 3.3, autorespond handles unpatched vulnerabilities by dis-
abling the packages that contain them. However, disabling the
required packages affects the application’s usability. To evaluate
this, we measure the reduction in functionality when packages
containing vulnerabilities are disabled.

We gather all the high and critical severity CVEs along with the
corresponding package information. For each of these packages, we
instruct PacJam to replace the package with our shadow package,
and measure the number of scenarios that terminate the execution
after flowing into a shadow package. Note that here we are inspect-
ing a case where terminating the execution without flowing into
the vulnerable package is in fact the expected behavior. We repeat
this process for each CVE of each application.

Figure 5 shows the CDF of the percentage of use scenarios af-
fected against the percentage of CVEs for each application. The

graph shows that for a given (𝑥,𝑦) coordinate on an application line,
disabling packages for 𝑥% of CVEs affects 𝑦% or less of the applica-
tion’s functionality (i.e., collected use scenarios). For command-line
utilities, except for curl and git, none of the CVEs affect the func-
tionality of the corresponding applications. Even in the case of git,
95% of the CVEs affect less than 5% of the functionality. In the
case of graphical user applications, at least 40% of the CVEs do
not affect the corresponding application’s functionality. In the case
of firefox, 78% of the CVEs do not affect any of its functionality.
Some CVEs affect a fraction of the application’s functionality. An
example of such vulnerability is CVE-2017-5130 in libxml2 that
affects some versions of the chromium browser. However, there
are certain CVEs in common libraries, such as CVE-2018-14550
in libpng, where disabling the corresponding packages will affect
100% of the application’s functionality. Although the functionality
reduction is high, we argue that this would be only for a short
duration as vulnerabilities in commonly used libraries are usually
fixed quickly because of their impact [29].

These results show that disabling only the affected packages
can be an effective automatic response to handling vulnerabilities
without reducing much of an application’s functionality. Further-
more, unlike other response techniques such as micro-patching or
[25], the approach is fully-automated, application-independent, and
applicable to all vulnerability categories. Therefore, the approach
taken by autorespond is effective at responding to vulnerabilities
with minimal impact on application functionality.

4.6 Real-world Case Studies

In this section, we present a real-world deployment of VLC me-
dia player (Figure 6). We also provide a similar case study of the
most popular web browser17, chromium, in Appendix A.2. During
normal use (i.e., when debloated packages are not needed), VLC
(and Chromium) execute similar to the original applications with
no additional overhead. We show that using PacJam will prevent
vulnerabilities without any loss of functionality.
VLC. As shown in Table 3, PacJam debloated vlc by removing 59%
of packages, including libebml, which has the CVE-2019-13615,
out-of-bounds access vulnerability (see Listing 1 in the Appendix).
Consider the case when an attacker tries to exploit CVE by tricking
the user into executing a specially crafted .mkv file that requires the
libebml package. However, libebml is debloated, but because of
our PD policy, i.e., permissive with sanitized packages, we load the
sanitized version of libebml and continue execution. The sanitized
version of libebml prevents the vulnerability, a memory out-of-
bounds write, as all memory accesses in a sanitized package are
checked for in-bounds access. This is shown in Figure 6 by (1.a) -
(1.e). Thus all attempts to exploit this vulnerability are prevented
by vlcpac. Furthermore, all benign files requiring libebml execute
correctly ((2.a) - (2-e) in Figure 6) with a small overhead of less than
1s caused by the address sanitization. Nonetheless, this shows that
PacJam, with its PD policies, provides an effective way to prevent
security vulnerabilities with minimal performance overhead.

17According to https://gs.statcounter.com/browser-market-share.

https://gs.statcounter.com/browser-market-share


Figure 6: PacJam debloated vlc (vlcpac) prevents execution of the

exploit .mkv file for CVE-2019-13615 (1.a-1.e) but allows the benign

file (2.a-2.e).

5 DISCUSSION

Despite the effectiveness of PacJam in debloating packages, the
security benefits of PacJam and, in general, any software debloat-
ing technique is debatable. Following related work, we use attack
surface reduction as ametric to evaluate the security benefits of Pac-
Jam. However, we emphasize that these metrics do not imply any

security guarantees.
As shown in Table 4, PacJam debloated various packages and

consequently removed various gadgets and vulnerabilities that
could occur in those packages. However, no classes of gadgets are
removed completely (i.e., 100% reduction ). This means no exploita-
tion primitive is prevented, and existing exploits still work and
might require changing gadget addresses. Furthermore, even if we
remove a gadget class (say COP) completely, the existing gadgets
could still be Turing complete. We should find a metric that helps to
evaluate the security benefits of debloating techniques qualitatively.
Nonetheless, as demonstrated in Section 4.6, PacJam along with its
PD policies provides security benefit by preventing exploitation of
vulnerabilities in rarely used packages.

Configuring PD policies. The PD policies introduced in section 3
can be global- or application-specific, with the preference given
to the latter. In general, we expect global policy to be strict and to
have lenient policies only for trusted applications.

These PD policies allow users—by default—to use sanitized ver-
sions of rarely needed packages (or libraries). Consequently, we
achieve increased security with a performance penalty only for
the corresponding rare use cases. For instance, media player ap-
plications can have a one-time mode with sanitization, such that
the sanitized version of the shadow package will be loaded only
once. This also alerts the user when the media player is trying to
load a rarely used shadow package while operating on potentially
untrusted data, e.g., a media file from an unknown sender.

There can be certain applications where performance is impor-
tant (e.g., web servers). Such applications can be configured with
different non-permissive PD policies (one-time and decay) that
allow packages to be installed for a limited time. The permissive
mode can be used for critical applications where both performance
and robustness (i.e., fewer restarts) are important.

Furthermore, PD policies can vary across machines. For instance,
a regularly maintained server can use decay mode as its global PD
policy. In an enterprise setting, we anticipate that PD policies will

be configured by trained system administrators and deployed into
end-user systems and servers based on their business requirements.
This also reduces alarm fatigue for average users.

6 LIMITATIONS AND FUTUREWORK

Despite its effectiveness, PacJam has several limitations.
Use Scenarios. We surveyed various sources to collect use scenar-

ios as discussed in Section 4.1 in order to ensure the quality of the
results reported in Section 4.3. They mainly consist of well-known
usages of applications, commands, and files available online. How-
ever, we do not claim to capture every functionality that users may
exercise in an application. While static debloating is independent of
test cases, dynamic debloating, based on use cases of interest, varies
the final set of dependencies enabled on the system. In real-world
uses of PacJam for application customization, usage scenarios of
individual users can be captured using the provided tracing tool.
We did not capture individual users’ activities for our evaluation
due to privacy concerns. However, as shown in Section 4, users can
self-customize their applications by using the permissive PD policy.

Source Code. Our implementation is based on LLVM which re-
quires the source code of packages to create corresponding shadow
packages. Consequently, unlike other tools [37, 39], the current
version cannot be directly used on binary-only packages. However,
with recent binary rewriting techniques such as RetroWrite [21],
we expect to successfully port PacJam to binary-only packages.

Misconfiguration. PD policies provide flexibility in handling de-
bloated packages, but misconfiguration can render debloating in-
effective. For example, the shadow packages will always load the
original package when permissive mode is on, therefore no ben-
efit is gained from debloating. However, with safe defaults and
documentation, such misconfigurations can be avoided [20].

Static Reachability Analysis. PacJam uses SVF’s static reachabil-
ity analysis to flag any unreachable packages. Its static debloating is
thus constrained by SVF’s limits. Some function pointers in applica-
tions cannot always be resolved statically. In the case of unresolved
function pointers, SVF cannot perform a precise analysis. SVF be-
haves conservatively in such cases and assumes that any function
can be used as the target of the function pointer. This hampers
the static debloating performed by PacJam. Applications that use
event-based GUIs are most affected by this limitation.

Shared Dependencies. PacJam assumes that a package shared
by multiple applications is either shadowed across all of them or
enabled across them all. This behavior is not ideal when a shared
package is not needed in application A but provides core functional-
ity in another application B. To address this challenge, we suggest
the following: 1) Using the onetime policy; the package is shad-
owed until a functionality in B requires it. Once application B is
terminated, the package reverts from the sanitized version to the
shadow version. This workaround does not address the case where
A and B are needed simultaneously in the same environment. 2)
Using the permissive mode; if application B is ever used, a sanitized
version of the common package replaces the shadow version so
both A and B can run simultaneously.

Inflight Unshadowing. As shown in Figure 2, unshadowing a
package through a PD policy requires restarting the application,
which simplifies the implementation of PD policies. However, such



abrupt application restarts could result in a bad user experience.
Users might lose unsaved application data, e.g., an unsaved doc-
ument in LibreOffice if restarted because of a PD policy. In our
future work, we plan to provide an inflight unshadowing mode.
In this mode, we save the application state at appropriate points
to seamlessly continue execution in the unshadowed package. We
will also explore the use of record-and-replay techniques [? ] for
inflight unshadowing.

7 RELATEDWORK

Software debloating. A large body of research has proposed tech-
niques to debloat software in order to decrease size and improve
security [13, 14, 22, 24, 27, 28, 33, 35–39, 42, 43]. Most of these
techniques debloat at a granularity that is finer than package-
level, e.g., statement- or function-level. Debloating at package-level
granularity can cause PacJam to exclude more desired usage sce-
narios compared to those techniques. Conversely, it enables spot
removal of newly discovered vulnerabilities without manual ef-
fort or runtime overhead, whereas existing techniques require re-
analyzing the original application or incur runtime overhead. Even
higher-level approaches to debloating have been proposed, such
as configuration-oriented debloating [28, 42], which aims to spe-
cialize an application based on static configuration constants and
directives, and container debloating [38], which reduces the image
size of application containers such as those provided by Docker.
In contrast, PacJam targets individual applications in a given con-
figuration, offering benefits complementary to those approaches.
Some techniques focus on more specialized debloating tasks such
as debloating the Chromium browser [36] whereas PacJam targets
a wide variety of applications.

Package managers. Most of the research literature on package
managers focuses on dependency and conflict resolution. Apt-
pbo [48] addresses the dependency management problem using
pseudo-boolean optimization. Opium [49] combines SAT solvers,
pseudo-boolean solvers, and ILP solvers to find an optimal set of
dependencies. These techniques can find the minimal set of de-
pendencies that a package requires for installation with respect to
statically determined dependencies. Instead, our approach aims to
install the minimal set of dependent packages that are enough to
execute (possibly a subset of) usage scenarios. Also, they are not
designed to support a security-aware package installation.

Android Permissions vs. PD policies. Our PD policies are similar to
the runtime permissions management in Android, where the user
should explicitly grant these permissions to the App at runtime.
If granted, the Android framework assigns the permission to the
App for a certain time (i.e., decay), after which the App needs to
re-request the permission18. Furthermore, users can revoke permis-
sions previously granted to an App19.

The permissions can be viewed as analogous to packages, and
granting permission means loading an unshadowed package. How-
ever, unlike PD policies, Apps must explicitly check and request
permissions. The use of binary compatible shadow packages en-
ables us to enforce PD policies without any changes to the program.
Moreover, permissions should be granted for each App explicitly. In

18https://developer.android.com/training/permissions/requesting
19https://support.google.com/android/answer/9431959

contrast, packages are global for the entire system - once a package
is unsandboxed (using a PD policy), all programs can use it.

Rapid response to vulnerabilities. Huang et al. propose Talos [25]
that provides a security workaround for rapid response. It uses
existing error-handling code within an application to prevent vul-
nerable code from executing. Our approach is complementary to
Talos as we provide a more efficient and robust response to newly
discovered vulnerabilities at the package level while their approach
can disable vulnerable pieces of code at a finer-grained level.

Security-aware dependency management. Recently, on the
GitHub marketplace, there are two general trends for security-
aware dependency management: (1) apps that help developers keep
dependencies up to date, and (2) apps that detect vulnerabilities in
dependencies. Depfu20 is an application in the first category which
creates automatic pull requests to update dependencies in order to
turn this task into a continuous process. Snyk21 belongs to the sec-
ond category which helps developers track security vulnerabilities
in dependencies. If a direct or transitive dependency is vulnerable,
it provides an automated update to fix the vulnerability as a depen-
dency update; if one does not exist, it provides proprietary patches.
Our system focuses mostly on the second category and provides a
mechanism to disable dependencies.

8 CONCLUSION

We presented a package-oriented debloating framework, PacJam,
for adaptive and security-aware management of an application’s
dependent packages. PacJam enables package-level removal of se-
curity vulnerabilities in a manner that minimizes disruption to the
application’s desired usage scenarios. Our experiments on a suite of
10 widely used Linux applications demonstrate that PacJam can ef-
fectively debloat applications, and provide rapid response to newly
discovered vulnerabilities in already installed packages.
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A APPENDICES

A.1 Usage Scenarios

We selected these test cases frommultiple sources to reflect a variety
of use cases. Particularly, for command-line applications, we draw
use cases from:

(1) Online tutorials. We google the term "X tutorial" where X is
the application name, and collect all commands from web
pages that appear on the first two pages of the search result.

(2) StackOverflow. We use StackOverflow to search each appli-
cation’s name, sort the results by the number of upvotes, and
crawl the first three pages to collect all the commands from
the accepted answers.

(3) CommandlineFu. We search the name of the command in
CommandlineFu22 and collect all results with at least one
upvote.

(4) Test Suite. We collect commands included by the developers
in the application’s regression test-suite.

For firefox and chromium, we collect the top 500 websites from
Alexa. We then open, browse, scroll, and randomly interact with
different elements of the page. In Section 4.3, we demonstrate the
adequacy of these test cases.
22https://commandlinefu.com
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Finally, for gimp, vlc, and xpdf, we survey their manuals to find
the media formats they support. For each format 𝑋 , we collected
all files of the format on the first three pages of Google search,
querying “sample 𝑋 files”, where 𝑋 is a format depending on the
application. The use cases comprise of opening these file formats
as well as basic interactions with the graphical user interface. In
particular, for gimp, we make new documents, save files, use the
brush, and apply image transformations; for vlc, we play and pause
video and audio files in the supported formats, add and remove
subtitles, change sound level, and stream video from a Youtube link;
for xpdf, we open, scroll, zoom, and print documents.

A.2 Chromium Case study

Chromium. As shown in Table 3, PacJam debloats chromium by
removing 59% of the dependencies. However, libxml2 is not de-
bloated because most web pages need it. Specifically, 350 out of
top 500 websites on Alexa need it. Consider the deployment of
PacJam-debloated chromium, i.e., chromiumpac (Figure 7) with de-
fault post-deployment policy (permissive with sanitization) along
with autorespond to provide a secure dependency lifecycle. When a
shadow package is needed, we use a sanitized version (i.e., package
compiled with address sanitizer) of the corresponding package.

.  .   .

autorespond

libxml2

Replace with 
shadow package

Post-deployment 
policy loads 

Address-Sanitized 
libxml

Heap out-of-bounds 
detected

CVE 2017-0663

Malicious Page

libxml2(a)

(b)

(1)

(2)

(3)

(4)
(5)

chromiumpac

Figure 7: autorespond disables (a-b) libxml from CVE-2017-0663

announcement and PacJam debloated chromium prevents execution
of a malicious webpage trying to exploit the CVE.

Consider CVE-2017-0663, a severe heap buffer over-flow vul-
nerability found in libxml2 on May 17, 2017 on OSS-Fuzz. Once
the announcement is made, autorespond disables libxml2 by re-
placing it with the shadow package on the user’s machine until an
official fix is available, as shown by (a) and (b) in Figure 7. It took
two months to fix the CVE23. Before the fix is released, if the user
inadvertently (or lured by an attacker) visits a malicious web page
that tries to exploit CVE-2017-0663 and requires libxml2, our post-
deployment policy, i.e., permissive with sanitized packages loads the
sanitized version of libxml2. However, in the sanitized package all
memory access are checked to be in-bounds thus preventing CVE-
2017-0663, as shown by (1) - (5) in Figure 7. Furthermore, all the
benign web pages that require libxml2 execute properly as they
do not try to exploit any vulnerability, with a small overhead of
less than 950ms caused by the address sanitization.
23According to https://tracker.debian.org/news/865443.

// ReadIndex could be more than the size of PossibleIdNSize array
 if (DataStream.read(&PossibleIdNSize[ReadIndex++], 1) == 0) {

return NULL;
}
ReadSize++;

} while (!bFound && MaxDataSize > ReadSize);

Listing 1: CVE-2019-13615: Out-of-bounds access in libebml
that is prevented by PacJam by using Address Sanitizer en-

abled libebml.

A.3 Unique Gadgets

In this section, we provide the definition of unique gadgets. Ac-
cording to the documentation of GadgetSetAnalyzer, two gadgets
are equal if they consist of the same sequence of equivalent in-
structions. Instructions are equivalent if they are the exact same
instruction with a single exception: if two instructions are inter-
mediate branches for multi-branch gadgets, they are considered
equivalent if the opcodes are the same, their first operands are
constants, and their second operands are None.

https://tracker.debian.org/news/865443
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