
Tracer: Signature-based Static Analysis for Detecting Recurring
Vulnerabilities

Wooseok Kang
KAIST
Korea

kangwoosukeq@kaist.ac.kr

Byoungho Son∗
POSTECH
Korea

byhoson@postech.ac.kr

Kihong Heo
KAIST
Korea

kihong.heo@kaist.ac.kr

ABSTRACT

Similar software vulnerabilities recur because developers reuse
existing vulnerable code, or make similar mistakes when imple-
menting the same logic. Recently, various analysis techniques have
been proposed to find syntactically recurring vulnerabilities via
code reuse. However, limited attention has been devoted to se-
mantically recurring ones that share the same vulnerable behavior
in different code structures. In this paper, we present a general
analysis framework, called Tracer, for detecting such recurring
vulnerabilities. The main idea is to represent vulnerability signa-
tures as traces over interprocedural data dependencies. Tracer is
based on a taint analysis that can detect various types of vulnera-
bilities. For a given set of known vulnerabilities, the taint analysis
extracts vulnerable traces and establishes a signature database of
them. When a new unseen program is analyzed, Tracer compares
all potentially vulnerable traces reported by the analysis with the
known vulnerability signatures. Then, Tracer reports a list of po-
tential vulnerabilities ranked by the similarity score. We evaluate
Tracer on 273 Debian packages in C/C++. Our experiment results
demonstrate that Tracer is able to find 112 previously unknown
vulnerabilities with 6 CVE identifiers assigned.

CCS CONCEPTS

• Security and privacy→ Software security engineering; Soft-
ware security engineering.

KEYWORDS

software security, program analysis, software engineering

ACM Reference Format:

Wooseok Kang, Byoungho Son, and Kihong Heo. 2022. Tracer: Signature-
based Static Analysis for Detecting Recurring Vulnerabilities. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3548606.3560664

∗This work was done during internship at KAIST.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560664

1 INTRODUCTION

Similar software vulnerabilities recur over time even across pro-
grams. One of the well-known reasons is the prevalence of code
reuse [23, 26, 33, 34, 47] that can lead to the spread of security
vulnerabilities in the reused code. In addition to such syntactic
recurrences, semantically similar vulnerabilities frequently recur
in unrelated codebases that are independently developed. One of
the reasons is that developers often make similar mistakes when
implementing the same standard concepts such as mathematical for-
mulas, laws of physics, protocols, or language interpreters [37, 42].
Another reason is common misconceptions due to complicated
low-level semantics of programming languages such as undefined
behaviors in C [14]. They can induce developers to write incor-
rect code with similar error patterns. According to a recent report
from Google, 6 out of 24 0-day vulnerabilities in 2020 were actually
variants of previously seen ones [42].

Although researchers have developed many successful tech-
niques to detect recurring security vulnerabilities, existing ap-
proaches have limitations in several aspects. Approaches based on
code similarity [12, 15, 23, 26, 29, 38, 47] aim at detecting recurring
vulnerabilities via code reuse. They generate signatures of known
vulnerabilities within a pre-defined boundary (e.g., file or function)
and compare syntactic patterns in a new program with the signa-
tures. These approaches are highly precise, scalable and general as
their approaches are based on syntactic matching. However, they
are usually unable to detect variants of known vulnerabilities with
completely different syntactic structures but with the same root
causes. On the other hand, pattern-based static analyses [2, 3, 18]
estimate the semantics of target programs as well as consider their
syntactic patterns. This in turn enables the analyzer to detect vul-
nerabilities that have similar syntactic and semantic characteristics
of programs with known vulnerabilities. However, designing such
analyses requires static analysis expertise and incurs a nontrivial
engineering burden.

To address this problem, we set out to build an effective software
immune system against recurring vulnerabilities. We identified the
following criteria to be satisfied for such a system:
• Accuracy: Does the system accurately report potential vulnera-
bilities with a low false positive rate?
• Robustness: Is the system able to find variants of vulnerabilities
that have the same root cause?
• Generality: Is the system applicable to a wide range of security
bugs?
• Scalability: Is the system applicable to large programs?
• Usability: Does the system provide easily interpretable reports?

In this paper, we present a signature-based static analysis for de-
tecting recurring vulnerabilities, Tracer, that is designed to satisfy

https://doi.org/10.1145/3548606.3560664
https://doi.org/10.1145/3548606.3560664

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Wooseok Kang, Byoungho Son, and Kihong Heo

the above criteria. The key idea is to represent vulnerability signa-
tures as traces over interprocedural data dependencies. Tracer is
based on a general taint analysis that aims at a variety of security
vulnerabilities such as integer overflow/underflow, format string,
buffer overflow, command injection, etc. The analyzer detects poten-
tially vulnerable data flows from untrusted inputs (so called, source)
to security-sensitive functions (so called, sink). We run the static
analyzer on a codebase with known vulnerabilities and identify the
actual vulnerabilities in the analysis results. Next, Tracer extracts
traces on the data dependency relations of the vulnerabilities from
the source points to the sink points. The traces are encoded as fea-
ture vectors that form the signatures of the vulnerabilities. Once a
new program is analyzed, Tracer extracts traces of all the reported
alarms in the program, and derives their feature vectors in the same
manner. Then, Tracer compares the feature vectors of the alarms
with those of the known vulnerable traces using a typical similarity
measure such as cosine similarity. Finally, Tracer provides a list of
alarms sorted by similarity.

We implemented Tracer based on Facebook’s Infer analyzer [5]
and demonstrated the effectiveness on a suite of Debian packages
written in C/C++. According to our experimental results on 273
Debian packages, Tracer discovered 112 recurring vulnerabilities
that are similar to known CVEs, vulnerability examples in Juliet
test suite [4], and sample code in online tutorials for secure coding.

This paper makes the following contributions:
• We propose a general analysis framework, Tracer, for detecting
semantically recurring vulnerabilities. Tracer is applicable to a
wide range of vulnerabilities.
• We present a trace-based method for computing the similarity
of vulnerabilities. Our method is based on data dependencies of
alarms reported by a general taint analysis.
• We evaluate the effectiveness of Tracer on 273 Debian packages.
We found 112 vulnerabilities with 6 CVE identifiers assigned.

2 OVERVIEW

2.1 Motivating Examples

We illustrate our approach with the programs with security vulner-
abilities in Figure 1. All three programs have similar issues related
to a certain kind of security vulnerability: overflowed integers can
be used as the size argument of memory allocation functions (e.g.,
malloc). Such integer overflows cause the program to unintention-
ally allocate small memory chunks, potentially leading to buffer
overflows.

Figure 1(a) shows the vulnerability in an image processing tool
gimp reported in 2009. The program reads a byte string from a given
file (line 10), transforms the string into an integer (line 12). Since
this value depends on the contents of the input file, the integer can
be arbitrarily large. The integer value at line 13 can also become
arbitrarily large because of the same reason. Then, the program
multiplies the integers, leading to an integer overflow (line 14).
Finally, the overflowed integer (rowbytes) is passed to the function
ReadImage and used as an argument of malloc (line 21). Notice
that the size of the allocated buffer can be much smaller than what
the developer expected. Therefore, potential buffer overflows can
happen when the buffer is used to store the data of the input file
afterward.

1 gint32 ToL(guchar *puffer) {

2 return (puffer[0] | puffer[1] << 8 | puffer[2] << 16 | puffer[3] << 24);

3 }

4 gint16 ToS(guchar *puffer) { return (puffer[0] | puffer[1] << 8); }

5
6 gint32 ReadBMP(gchar *name) {

7 FILE *fd = fopen(name, "rb");

8 if (!fd) return -1;

9 // Read from a file

10 if (fread(buffer, Bitmap_File_Head.biSize - 4, fd) != 0)

11 return -1;

12 Bitmap_Head.biWidth = ToL(& buffer[0x00]);

13 Bitmap_Head.biBitCnt = ToS(& buffer[0x0A]);

14 rowbytes = ((Bitmap_Head.biWidth * Bitmap_Head.biBitCnt - 1) / 32) * 4 + 4;

15 image_ID = ReadImage(rowbytes);

16 ...

17 }

18
19 gint32 ReadImage(gint rowbytes) {

20 /* memory allocation with an overflowed size */

21 guchar *buffer = malloc(rowbytes);

22 /* uses of buffer */

23 }

(a) gimp-2.6.7 (CVE-2009-1570)

1 long ToL(unsigned char *puffer) {

2 return (puffer[0] | puffer[1] << 8 | puffer[2] << 16 | puffer[3] << 24);

3 }

4 short ToS(unsigned char *puffer) { return (puffer[0] | puffer[1] << 8); }

5
6 bitmap_type bmp_load_image(FILE *fd) {

7 if (fread(buffer, 18, fd) || (strncmp((const char *)buffer, "BM", 2)))

8 FATALP("BMP:␣not␣a␣valid␣BMP␣file");

9 // Read from a file

10 if (fread(buffer, Bitmap_File_Head.biSize - 4, fd) != 0)

11 FATALP("BMP:␣Error␣reading␣BMP␣file␣header␣#3");

12 Bitmap_Head.biWidth = ToL(&buffer[0x00]);

13 Bitmap_Head.biBitCnt = ToS(&buffer[0x0A]);

14 rowbytes = ((Bitmap_Head.biWidth * Bitmap_Head.biBitCnt - 1) / 32) * 4 + 4;

15 image.bitmap = ReadImage(rowbytes);

16 ...

17 }

18
19 unsigned char *ReadImage(int rowbytes) {

20 /* memory allocation with an overflowed size */

21 unsigned char *buffer = (unsigned char *) new char[rowbytes];

22 /* uses of buffer */

23 }

(b) sam2p-0.49.4 (CVE-2017-16663)

1 XcursorBool _XcursorReadUInt(XcursorFile *file, XcursorUInt *u) {

2 unsigned char bytes[4];

3 if ((*file->read)(file, bytes, 4) != 4) // Read from a file

4 return XcursorFalse;

5 *u = (bytes[0] | (bytes[1] << 8) | (bytes[2] << 16) | (bytes[3] << 24));

6 return XcursorTrue;

7 }

8
9 XcursorImage *_XcursorReadImage(XcursorFile *file) {

10 XcursorImage head;

11 XcursorImage *image;

12 if (!_XcursorReadUInt(file, &head.width)) return NULL;

13 if (!_XcursorReadUInt(file, &head.height)) return NULL;

14 image = XcursorImageCreate(head.width, head.height);

15 ...

16 }

17
18 XcursorImage *XcursorImageCreate(int width, int height) {

19 XcursorImage *image;

20 /* memory allocation with an overflowed size */

21 image = malloc(sizeof(XcursorImage) + width * height * sizeof(XcursorPixel));

22 /* initialize struct image */

23 return image;

24 }

(c) libXcursor-1.1.14 (CVE-2017-16612)

Figure 1: Examples code excerpted from similar vulnerabili-

ties from different programs.

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Signature
Database

Similarity
Checker

Program

Static
Analyzer Ranked Alarms

1. … : 0.94
2. … : 0.66
3. … : 0.32Feature

Vector
GeneratorAlarm

Traces
Feature
Vectors

Static
Analyzer

Feature
Vector

Generator

Vulnerable
Traces

Vulnerability
Signatures

Known
Vulnerabilities

New
Vulnerabilities

1. … : 0.94
2. … : 0.66
3. … : 0.32

Figure 2: System overview of Tracer

After 8 years, a similar vulnerability was found in another pro-
gram, sam2p depicted in Figure 1(b). sam2p is also an image pro-
cessing tool, so it has a similar piece of code that reads a BMP file.
Because of exactly the same reason as gimp, this program is also vul-
nerable. Notice that the code snippet is quite similar to that of gimp.
Conceptually, existing methods based on code clone detection may
help catch such recurring vulnerabilities given the vulnerability in
gimp as a signature. However, it is sometimes challenging in prac-
tice. Clone-based approaches typically compare two pieces of code
within a pre-defined syntactic boundary (e.g., functions or blocks).
This in turn hinders vulnerability detection when vulnerable behav-
ior involves multiple functions as in the examples. State-of-the-art
tools [26, 47] heuristically choose a vulnerability signature function
that contains the patches of the known vulnerability (ReadBMP in
the gimp case). However, this is still fragile if the functions are
large and contain considerable syntactic differences. For example,
ReadBMP in gimp consists of 382 lines while bmp_load_image in
samp2p has only 151 lines. Although the essence of the vulnerabil-
ity is the same, they have many discrepancies in the other parts. For
example, lines 7–8 in the two programs are completely different,
and sam2p, which is a C++ program, uses new rather than malloc.

Moreover, recurring vulnerabilities are not always induced by
code clones. Developers often make similar mistakes when they
write programs that have typical or standard behavior both at a
low level (e.g., reading data from files or allocating heap memory
blocks) and at a high-level (e.g., calculating the area of a square or
processing an image file). An example from libXcursor is shown in
Figure 1(c). Similar to the previous examples, the program reads
data from an input file (line 3), converts the input byte string to an
integer (line 5), and computes the multiplication of two arbitrary
large integers (line 21). The multiplication also leads to an integer
overflow at the same line that can cause buffer overflows afterward.
Notice that the root cause of the vulnerability is the same as the
other examples. However, libXcursor has completely different syn-
tactic structures. For example, libXcursor uses an indirect call to
fread at line 3 while the other programs directly call the function.

Existing approaches are not appropriate to detect such semanti-
cally recurring vulnerabilities. Clone-based approaches [26, 47] are
not effective to detect this vulnerability, given the vulnerability in
gimp or sam2p as a signature. While the essence of the vulnerability
is still the same, the different code structure of libXcursor funda-
mentally hinders the detectability of the tools. Static bug-finding

tools that aim at general integer overflows may detect this vulnera-
bility but also can incur many false positives. One can also design
a specialized static analysis dedicated to each pattern. However,
it would impose a high engineering burden while producing sub-
optimal solutions. For example, the TaintedAllocationSize checker
from Github’s CodeQL [8], which is a state-of-the-art pattern-based
analyzer, does not detect the particular vulnerabilities in Figure 1.

2.2 Our Approach

Now, we introduce how Tracer can detect recurring vulnerabilities.
Our approach is shown in Figure 2. In the rest of this section, we
explain the procedure of each component of Tracer and show the
vulnerabilities in sam2p and libXcursor can be accurately detected
by Tracer given the one in gimp as a signature.

2.2.1 Taint Analysis. Tracer is based on a generic taint analysis
that can be instantiated to bug detectors for various types of security
vulnerabilities. The analysis computes potential data flows from
untrusted inputs (sources) to sensitive functions (sinks) with a
simple abstract domain for tainted values: T = {⊥𝑡 ,⊤𝑡 } where
each element denotes that the value is not tainted (⊥𝑡) and may be
tainted (⊤𝑡). For example, in Figure 1(a), the malicious data flow
from fread to malloc is detected by the analyzer.

One may elaborate the analysis with other abstract domains
along with the basic taint domain for a more accurate analysis. In
our implementation, we have a simple abstract domain I = {⊥𝑜 ,⊤o}
for estimating whether an integer value is potentially overflowed
(⊤o) or not (⊥𝑜). For example, an untrusted input value is initially
tainted (⊤t) but not overflowed (⊥𝑜). Once the value is used as
an operand of an operator that can potentially introduce integer
overflow (e.g., +, <<), the result becomes tainted (⊤t) and over-
flowed (⊤o). For the malloc case, our analyzer raises an alarm only
when the abstract value of the argument is both tainted (⊤t) and
overflowed (⊤o). By doing so, we do not report trivial false alarms
while efficiently computing malicious data flows. The details of our
implementation are described in Section 4.

2.2.2 Traces on Data Dependency Graphs. We run the taint anal-
ysis on a given set of programs whose vulnerabilities are already
known. For each known vulnerability, Tracer extracts vulnerable
traces from the source and sink points based on the static analysis
result. To filter out statements that are irrelevant to the vulner-
ability as much as possible, we derive vulnerable traces on data

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Wooseok Kang, Byoungho Son, and Kihong Heo

fread

puffer[0] | (puffer[1] << 8) | (puffer[2] << 16) | (puffer[3] << 24)

((Bitmap_Head.biWidth * Bitmap_Head.biBitCnt - 1) / 32) * 4 + 4;

malloc

⟨fread : 1, | : 3, << : 3, * : 2, + : 1, - : 1, / : 1, malloc : 1⟩

(a) gimp in Figure 1(a)

fread

bytes[0] | (bytes[1] << 8) | (bytes[2] << 16) | (bytes[3] << 24)

sizeof(XcursorImage) + width * height * sizeof(XcursorPixel)

malloc

⟨fread : 1, | : 3, << : 3, * : 2, + : 1, - : 0, / : 0, malloc : 1⟩

(b) libXcursor in Figure 1(c)

Figure 3: Vulnerable traces and their feature vectors. The

blue and red nodes represent the source and sink points,

respectively.

dependency graphs rather than control-flow graphs. Once the taint
analysis detects potentially malicious flows in gimp and libXcursor

in Figure 1, Tracer derives data dependency graphs and extracts
the vulnerable traces from the sources to sinks as shown in Figure 3.
Such traces will be used as signatures of vulnerabilities.

The same procedure will be applied to new target programs. In
particular, Tracer extracts all possible traces from sources to sinks
of the reported alarms while unrolling each loop only once. These
traces will be compared to the signature traces.

2.2.3 Feature Representation. Next, Tracer encodes each trace as
an integer feature vector. We design a program-independent and
common feature space that can represent transferable knowledge
for vulnerabilities. Our feature vector consists of two parts: low-
level and high-level features.

Low-level features represent the frequencies of primitive opera-
tors X (e.g., *, <<) and common APIs X (e.g., strlen) on the trace.
Figure 3(a) shows the feature vector of the vulnerable trace in gimp.
Likewise, the feature vector for libXcursor is shown in Figure 3(b).

On the other hand, high-level features describe detailed behavior
of traces that are not noticeable using only the low-level ones. We
manually designed 5 high-level features. In general, they charac-
terize crucial behavior of programs that can affect our target vul-
nerabilities. For example, one of our features IfSmallerThanConst

checks whether a trace has a conditional statement whose condi-
tion is of the form x < c where x is a variable and c is a constant.
This pattern is common when programs prevent integer overflows.
Suppose there exists such an expression in a trace of the target
program, but not in the signature trace. Then, the target trace is
deemed to be safe and the similarity score becomes lower.

Algorithm 1: Tracer(Π,A, 𝑃) where Π is a set of feature
vectors of signature traces, A is a static analyzer, and 𝑃 is
the program to be analyzed.
1 Ω ← A(𝑃);
2 𝐺 ← build_dfg(𝑃);
3 𝑅 ← ∅;
4 for 𝜔 ∈ Ω do

5 T𝜔 ← extract_traces(𝐺,𝜔);
6 Π𝜔 ← {generate_feature(𝜏) | 𝜏 ∈ T𝜔 };
7 𝑠 ← max{Sim(𝜋𝜔 , 𝜋) | 𝜋𝜔 ∈ Π𝜔 , 𝜋 ∈ Π};
8 𝑅 ← 𝑅{𝜔 ↦→ 𝑠};
9 return 𝑅;

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐸 → 𝑛 | 𝑥 | 𝐸 + 𝐸 | 𝐸 − 𝐸 | source𝑙 ()
𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶 → 𝑥 := 𝐸 | assume(𝑥 < 𝑛) | sink(𝐸)

Figure 4: Language

2.2.4 Similarity Checking. Once a new program is analyzed, Tracer
extracts all alarm traces and compares them against the known
vulnerability signatures. Since all the traces are encoded as vectors,
we can use any common similarity measures. In our implementa-
tion, we use cosine similarity, a well-known similarity measure for
two vectors. For example, the cosine similarity of the two feature
vectors in Figure 3 is computed as follows:

⟨1, 3, 3, 2, 1, 1, 1, 1⟩ · ⟨1, 3, 3, 2, 1, 0, 0, 1⟩
| |⟨1, 3, 3, 2, 1, 1, 1, 1⟩| | | |⟨1, 3, 3, 2, 1, 0, 0, 1⟩| | = 0.96

Therefore, Tracer can precisely detect semantically recurring vul-
nerabilities with high similarity scores.

3 FRAMEWORK

In this section, we formalize our approach. The overall procedure
of Tracer is described in Algorithm 1. Tracer first analyzes the
target program and derives a set of alarms (line 1). Next, Tracer
computes the data dependency graph of the program (line 2). For
each alarm of the program, the algorithm extracts a set of traces
(line 5) and encodes them as feature vectors (line 6). Finally, we
compare each generated feature vector of the alarm 𝜔 with vulner-
ability signature traces. The score of the alarm is determined as
the maximum similarity score of them (line 7). In the rest of this
section, we formalize the details of each component of Tracer.

3.1 Program

A program is represented as a control flow graph ⟨C,→⟩ where C is
the set of control points and (→) ⊆ C×C is the control-flow relation.
Each control point is associated with a command. We assume a
simple imperative language defined in Figure 41. An expression is
an integer, variable, addition operation, subtraction operation, or
call to a source function. A command is an assignment, assume,
or call to a sink function. source and sink represent functions

1For brevity, we only consider this simple language but our implementation handles
the full features of C/C++.

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

(Abstract state) S = C→ M
(Abstract memory) M = X→ T × V
(Taint) T = ℘(C)

(a) Abstract domains

[[𝐸]] : M→ T × V
[[𝑛]] (𝑚) = ⟨∅,V(𝑛) (𝑚)⟩
[[𝑥]] (𝑚) = 𝑚(𝑥)

[[𝐸1 + 𝐸2]] (𝑚) = ⟨𝑇1 ∪𝑇2,V(𝐸1) (𝑚) +V V(𝐸2) (𝑚)⟩
[[𝐸1 − 𝐸2]] (𝑚) = ⟨𝑇1 ∪𝑇2,V(𝐸1) (𝑚) −V V(𝐸2) (𝑚)⟩
[[source𝑙 ()]] (𝑚) = ⟨{𝑙},V(source) (𝑚)⟩

[[𝐶]] : M→ M
[[𝑥 := 𝐸]] (𝑚) = 𝑚{𝑥 ↦→ [[𝐸]] (𝑚)}

[[assume(𝑥 < 𝑛)]] (𝑚) = 𝑚

[[sink(𝐸)]] (𝑚) = 𝑚

(b) Abstract semantics

Figure 5: Generic Taint Analysis

that read untrusted inputs (e.g., fread), and use the arguments in
a sensitive context (e.g., malloc), respectively. We assume each
source point is associated with a unique label 𝑙 .

3.2 Generic Taint Analysis

We present a generic static analysis for taint tracking. The goal of
the analysis is to estimate potential data flows from source points
to sink points. The analysis can be instantiated to a family of taint
analyses that are applicable to common types of vulnerabilities such
as integer overflow, format string, or command injection [20, 21, 44].
We will present the detailed instantiation for our implementation
in Section 4.

Abstract domains are shown in Figure 5(a). For a given program,
our analyzer computes an abstract state (∈ S) that is a mapping
from control points to the corresponding abstract memories. An
abstract memory (∈ M) is a mapping from variables (∈ X) to their
abstract values. An abstract value consists of two parts: the abstract
domains for taint information (T) and value information (V). The
taint domain is the power set of source labels. For taint checking, we
collect all possible source points that lead to the value. The value do-
main represents general information of variables. For instance, one
may define a simple abstract domain that only represents whether
a value is overflowed, or a more sophisticated domain such as the
interval domain. Our design choice will be explained in Section 4.
Note that the value domain is not mandatory but is used to improve
the precision of the analysis.

Abstract semantics is defined in Figure 5(b). The abstract se-
mantics for expressions [[𝐸]] computes the abstract value of an
expression given an abstract memory. We assume that the value do-
mainV is accompanied by an evaluation functionV : 𝐸 → M→ V
that computes the abstract value for an expression. Constant values
(𝑛) are not tainted and introduce an abstract value according toV .
For binary operations (+ and -), we join the taint information of two
operands and compute the results of the corresponding abstract
operator. For source points, the analyzer collects the labels, which
will be used for taint checking, and computes its abstract value.

The abstract semantics for commands [[𝐶]] computes the abstract
memory after the execution of 𝐶 given an abstract memory.

Tracer derives a set of alarms from the analysis results. An
alarm of the taint analysis 𝜔 = ⟨𝑐1, 𝑐2⟩ is a pair of two control
points where 𝑐1 is a source point and 𝑐2 is a sink point that uses the
untrusted data from the source 𝑐1. We assume that the analysis is
accompanied by an alarm inspection function Q : C→ M→ ℘(C).
Given a sink point 𝑐 and an abstract memory𝑚 at 𝑐 from the analysis
result, Q(𝑐) (𝑚) is a set of source points fromwhich vulnerable data-
flows start to the sink point 𝑐 . Once an analysisA(𝑃) for program 𝑃

is completed, a set of alarms Ω is derived using the alarm inspection
function.

Definition 1 (Alarm). Let C𝑠 be a set of all sink points of a
program. A set of alarms Ω of the program is defined as follows:

Ω = {⟨𝑐1, 𝑐2⟩ | 𝑐2 ∈ C𝑠 , 𝑐1 ∈ Q(𝑐2) (𝑚)}

where𝑚 is the abstract memory at 𝑐2 according to the analysis results.

3.3 Data Dependency Graph and Tainted Traces

Next, we build a data dependency graph for the input program.
Given a control-flow graph ⟨C,→⟩ of the program, the data de-
pendency graph is defined as a tuple ⟨C,;⟩. The data dependency
graph has the same set of nodes but is based on data dependency
relations rather than control-flow relations. We follow the standard
notion of data dependency:

𝑐1 ; 𝑐2 ⇐⇒ 𝑐1 →+ 𝑐2 ∧ 𝑥 is defined at 𝑐1 ∧ 𝑥 is used at 𝑐2
∧ 𝑥 is not re-defined in any points between 𝑐1 and 𝑐2 .

where 𝑥 is a program variable. Such data dependency relation can
be computed during the static analysis by bookkeeping additional
information about the definition and use points. While control
dependencies are not considered, we capture crucial branch con-
ditions by specially treating conditional expressions (assume in
Figure 5(b)). We consider variables used in conditional expressions
also as defined ones. With this heuristic choice, Tracer can capture
important steps such as bound checking in practice.

Once a data dependency graph is established, we extract tainted
traces of alarms. For each alarm, Tracer derives all paths from the
source point to the sink point on the data dependency graph.

Definition 2 (Tainted Trace). Given an alarm 𝜔 = ⟨𝑐0, 𝑐𝑛⟩, a
set of tainted traces T𝜔 ⊆ C+ is defined as follows:

T𝜔 = {⟨𝑐0, . . . , 𝑐𝑛⟩ | ∀𝑖 ∈ [0, 𝑛 − 1] . 𝑐𝑖 ; 𝑐𝑖+1}.

In the presence of loops, there can exist infinitely many traces of an
alarm. In our implementation, Tracer unrolls each loop by once.

3.4 Feature Vector and Similarity Score

Tracer transforms each tainted trace to a feature vector that en-
codes the characteristics of the trace. We define a set of features to
capture essential knowledge of vulnerable traces that are reusable
across different programs. Tracer uses numerical features 𝑓𝑖 :
C+ → N. Given a set of 𝑛 features {𝑓1, . . . , 𝑓𝑛}, Tracer derives a
feature vector of a trace 𝜏 : ⟨𝑓1 (𝜏), . . . , 𝑓𝑛 (𝜏)⟩. Then, a set of feature
vectors Π𝜔 of an alarm 𝜔 is defined as follows:

Π𝜔 = {⟨𝑓1 (𝜏), . . . , 𝑓𝑛 (𝜏)⟩ | 𝜏 ∈ T𝜔 }

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Wooseok Kang, Byoungho Son, and Kihong Heo

(Abstract value) V = I × I
(Overflow) I = {⊥𝑜 ,⊤𝑜 }
(Underflow) I = {⊥𝑢 ,⊤𝑢 }
V(𝑛) (𝑚) = ⟨⊥𝑜 ,⊥𝑢⟩

V(𝐸1 + 𝐸2) (𝑚) = ⟨⊤𝑜 ,𝑈1 ⊔𝑈2⟩
whereV(𝐸1) (𝑚) = ⟨_,𝑈1⟩
andV(𝐸2) (𝑚) = ⟨_,𝑈2⟩

V(𝐸1 − 𝐸2) (𝑚) = ⟨𝑂1 ⊔𝑂2,⊤𝑢⟩
whereV(𝐸1) (𝑚) = ⟨𝑂1, _⟩
andV(𝐸2) (𝑚) = ⟨𝑂2, _⟩

V(source) (𝑚) = ⟨⊥𝑜 ,⊥𝑢⟩

Figure 6: Abstract domains

Finally, Tracer compares the feature vectors of alarms in pro-
gram 𝑃 to the set of all pre-computed feature vectors of known vul-
nerabilities, ΠS . The set ΠS can be derived using the same steps de-
scribed in the previous sections except that only known true alarms
are considered. We also assume a function Sim : N𝑛 ×N𝑛 → R that
computes the similarity of two feature vectors. Using the similarity
function, the score of an alarm is defined as the maximum similarity
score between alarm traces and signature traces.

Definition 3 (Score of alarm). Given an alarm 𝜔 and a set of
feature vectors of signatures ΠS , the score of the alarm is defined as
follows:

max{Sim(𝜋𝜔 , 𝜋) | 𝜋𝜔 ∈ Π𝜔 , 𝜋 ∈ ΠS}

where Π𝜔 is a set of feature vectors of alarm 𝜔 .

4 INSTANTIATION

This section describes the details of our system. First, we instantiate
the generic taint analysis to detect common types of vulnerabilities.
Our implementation aims at detecting integer overflows, integer
underflows, buffer overflows, format string bugs, or command in-
jections. Then, we explain our feature design.

4.1 Abstract Domains and Semantics

We define the abstract domain V and functionV that are used in
our implementation in Figure 6. The abstract domain V constitutes
two parts: the overflow domain and the underflow domain. The
overflow domain I (resp., underflow domain I) represents whether
the value may be overflowed (⊤𝑜) (resp., underflowed) or not (⊥𝑜).
The function V : 𝐸 → M → V approximates the chances of
integer overflows and underflows for a given expression and an
abstract memory. Constant values (𝑛) are not overflowed and un-
derflowed. For addition (resp., subtraction) operators, we conser-
vatively approximate the value to be potentially overflowed (resp.,
underflowed).

For the five types of vulnerabilities, we use the following alarm
inspection function Q:

Q(𝑐) (𝑚) = Q𝑇 (𝑐) (𝑚) ∪ Q𝑂 (𝑐) (𝑚) ∪ Q𝑈 (𝑐) (𝑚) .

Each sub-function is defined as follows:

Q𝑇 (𝑐) (𝑚) = {𝑐0 | 𝑐0 ∈ 𝑇, ⟨𝑇, _, _⟩ = [[𝐸]] (𝑚)}
Q𝑂 (𝑐) (𝑚) = {𝑐0 | 𝑐0 ∈ 𝑇, ⟨𝑇,⊤𝑜 , _⟩ = [[𝐸]] (𝑚)}
Q𝑈 (𝑐) (𝑚) = {𝑐0, | 𝑐0 ∈ 𝑇, ⟨𝑇, _,⊤𝑢⟩ = [[𝐸]] (𝑚)}

where 𝑐 is a sink point and the abstract memory at 𝑐 is𝑚. Function
Q𝑇 collects all the source points of a sink point if the argument of
a sink function is tainted. Tracer uses Q𝑇 to detect format string,
command injection, and buffer overflow at printf-like functions,
exec-like functions, and memcpy-like functions, respectively. Q𝑂
and Q𝑈 additionally check whether the argument can be poten-
tially overflowed and underflowed, respectively. The functions are
used to detect malicious uses of memory allocations (e.g., malloc)
with an overflowed (i.e., unintentionally small) argument, and mem-
ory copies (e.g., memset) with an underflowed (i.e., unintentionally
large) argument.

4.2 Features and Similarity Measure

We have designed a set of features for tainted alarm traces that
are shown in Table 1. The set of features comprises two categories:
low-level and high-level features.

The low-level featuresNumOfOpX andNumOfLibX describe the
frequency of each primitive operator X (e.g., + and <<) and standard
library call X (e.g., strlen and strcmp) on a trace. For example,
Figure 3 shows the feature vectors of traces with the low-level fea-
tures. The motivation behind this feature design is based on the
observation of typical bug reports. Developers typically recognize
and describe a vulnerability in terms of a sequence of operations2.
In our experience, such a sequence is a reasonable signature to char-
acterize standard concepts such as geometry formulas or protocols.
Even though our features only consider frequencies of operators on
traces, each trace is carefully derived using a sophisticated context-
sensitive static analysis. We extract traces only when the analyzer
raises alarms. Furthermore, the traces are based on data flows rather
than control flows. These design choices improve the accuracy of
the system based on the similarity comparison.

On the other hand, the high-level features are designed to cap-
ture deeper contexts of traces. Instead of counting individual oc-
currences of operators, the features describe relationships among
expressions and operators.We separated the low-level features from
the high-level ones to balance manual efforts and accuracy. The
low-level features consist of general program components that are
transferable across different programs and do not require manual
efforts. Instead, we manually designed the high-level features by
observing typical bug-fix patterns. For example, EqualToPercentage
is inspired by usual conditional expressions to prevent format string
bugs. A similar design choice is used in MVP [47]; they also handle
format strings specially. Such high-level features help filter out
typical false alarms. In our experiments, the accuracy of Tracer
with only the low-level features is already reasonably high, but the
high-level features can further improve the accuracy. The details
will be discussed in Section 5.4.

Tracer uses cosine similarity, a well-known measure of similar-
ity between two vectors. Given two feature vectors 𝜋1 and 𝜋2, the

2For example, https://cgit.freedesktop.org/xorg/lib/libXcursor/commit/?id=
4794b5dd34688158fb51a2943032569d3780c4b8.

https://cgit.freedesktop.org/xorg/lib/libXcursor/commit/?id=4794b5dd34688158fb51a2943032569d3780c4b8
https://cgit.freedesktop.org/xorg/lib/libXcursor/commit/?id=4794b5dd34688158fb51a2943032569d3780c4b8

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 1: Features of traces. 𝐸 and 𝐾 represent an arbitrary

expression and a constant, respectively.

Name Description

NumOfOpX # primitive operator X on the trace
NumOfLibX # calls to library X on the trace

LargerThanConst # expressions of the form 𝐸 > 𝐾 or 𝐸 ≥ 𝐾
SmallerThanConst # expressions of the form 𝐸 < 𝐾 or 𝐸 ≤ 𝐾
EqualToVar # expressions of the form 𝐸 == 𝐾
NotEqualToVar # expressions of the form 𝐸 != 𝐾
EqualToPercentage # expressions of the form 𝐸 == ‘%’

similarity is defined as follows:

Sim(𝜋1, 𝜋2) =
𝜋1 · 𝜋2
| |𝜋1 | | | |𝜋2 | |

.

4.3 Application to Other Vulnerability Types

The general principle behind Tracer—computing similarity scores
between traces—is applicable to other types of vulnerabilities if the
underlying analyzer produces traces of alarms. For example, static
analyzers for double-free or use-after-free bugs typically report
potentially erroneous traces from a call to free to other calls to
free or uses of the same pointer. We demonstrate the applicability
to other vulnerability types in the next section.

5 EXPERIMENT

Our evaluation is designed to answer the following questions:
• RQ1: How effective is Tracer for finding unknown recurring
vulnerabilities?
• RQ2: How accurate is Tracer comparedwith existing approaches?
• RQ3: How effective is the high-level features of Tracer?
• RQ4: How scalable is Tracer to large programs?
All experiments were conducted on Linux machines with Intel
Xeon 2.90GHz. We set the timeout to one hour for running the
static analysis for each package. Our code and data are publicly
available at https://prosys.kaist.ac.kr/tracer/.

5.1 Experimental Setup

5.1.1 Implementation. We implemented Tracer on top of Face-
book’s Infer analyzer [5]. The taint analyzer is designed as described
in the previous sections. We use pointer information computed by
Infer’s buffer overrun checker. Following Infer’s framework, our
taint analysis is designed to be a modular interprocedural analy-
sis (i.e., context-sensitive). For each benchmark, we run 20 tasks
in parallel. Our taint analysis checks five common vulnerabilities
described in Section 4: integer overflows, integer underflows, buffer
overflows, command injections, and format string bugs. We used
the Pulse engine of Infer for use-after-free and double-free bugs.

5.1.2 Signature programs. We collected signature programs from
different sources of real-world and synthetic vulnerabilities:
(1) Real-world vulnerabilities: We collected 16 vulnerabilities

that can be reproduced by our taint analysis from the CVE
report [10] and prior work [20, 21].

(2) Juliet test suite [4]: Juliet Test Suite consists of a large set of
small programs each of which has a common vulnerability. We
used 5,383 programs that have the same types of vulnerabilities
handled by our analysis.

(3) Online tutorial: We collected 5 examples from online tutorials
on secure programming provided by OWASP [16].

5.1.3 Benchmarks. We evaluated Tracer using 273 Debian pack-
ages written in C/C++. We selected 16 common categories (web,
sound, utils, etc) of Debian packages [13] that contain at least one
package that Infer can analyze. This step excludes many categories
consisting of unsupported languages (e.g., R, Haskell, etc) and pack-
ages having build issues in our environment. We randomly chose 20
packages that have at least one alarm raised by our analyzer in the
selected categories. For categories that have less than 20 packages,
we used all packages in the categories.

5.1.4 Baselines. We compare Tracer with state-of-the-art bug
detection tools from three categories: 1) clone-based approach
2) learning-based approach 3) pattern-based static analyzer. For
each category, we chose tools that were recently proposed and
are publicly available: VUDDY [26], CCAligner [43], Devign [48]
and Github’s CodeQL [2]. We ran the baselines for the same types
of vulnerabilities handled by Tracer. For VUDDY, we selected
the reported alarms based on their CWE ID [11] that matches the
vulnerability types. For CodeQL, we ran all their security-related
queries dedicated to the corresponding CWE IDs [7] of the types.

5.1.5 Metrics. Each analyzer reports alarms in different manners.
For example, tools based on static analysis (e.g., CodeQL, Infer)
typically report sink points as alarms. However, this may be an
overestimation if there are multiple sink points from the same
malicious input point. For a fair comparison, we used the following
metrics:
• Root causes: To show the effectiveness (Section 5.2), we report
the number of root causes of discovered vulnerabilities. We man-
ually inspected the true alarms from the analyzers and counted
the number of root causes.
• Sink points: To compare the precision and recall of the analyzers
(Section 5.3), we use sink points as both Tracer and CodeQL
provide them to the users as alarms. We counted the number of
true alarms and false alarms reported by the analyzers. For the
other tools (VUDDY, CCAligner, Devign) that report vulnerable
functions, we counted the number of reported functions.

5.2 RQ1: Effectiveness

5.2.1 New Bugs. This section shows how effective Tracer is for de-
tecting previously unknown vulnerabilities in the Debian packages.
We manually inspected all the reported alarms whose similarity
scores are larger than 0.85. In addition, we randomly selected 100
alarms below the threshold and manually inspected them. In total,
424 reports (i.e., sink points) were investigated.

Tracer found 112 new vulnerabilities in 67 packages. Among
them, 30 vulnerabilities have been confirmed by the developers and
6 CVEs have been assigned as of writing this paper. For all the other
reports, we have not received answers by the time of submission.
Among the 112 bugs, only 10 can be found by the baseline tools
(VUDDY𝑂 and Devign𝑂).

https://prosys.kaist.ac.kr/tracer/

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Wooseok Kang, Byoungho Son, and Kihong Heo

1 bool ssgLoadTGA(...) {

2 GLubyte header[18];

3 fread(header, 18, 1, f);

4 ...

5 int xsize = get16u(header + 12);

6 int ysize = get16u(header + 14);

7 int bits = header[16];

8 ...

9 // potential integer overflow

10 GLubyte *image = new GLubyte [(bits / 8) * xsize * ysize];

11 ...

12 }

13
14 int get16u(const GLubyte *ptr) { return (ptr[0] | (ptr[1] << 8)); }

Figure 7: An integer overflow discovered in libplib1-1.8.5 that
is similar to the one from sam2p-0.49.4 in Figure 1(b).

1 void CWE190_Integer_Overflow__int64_t_fscanf_square_01_bad() {

2 int64_t data;

3 data = 0LL;

4 fscanf (stdin, "%" SCNd64, &data);

5 // potential integer overflow

6 int64_t result = data * data;

7 char *p = malloc(result);

8 }

(a) Juliet test suite (CWE-190)

1 static DiaObject *fig_read_polyline(FILE *file, DiaContext *ctx) {

2 fscanf(file, "%d␣%d␣%d␣%d␣%d␣%d␣%d␣%d␣%lf␣%d␣%d\n", ..., &npoints)

3 newobj = create_standard_polyline(npoints, ...);

4 ...

5 }

6
7 DiaObject *create_standard_polyline(int num_points, ...) {

8 pcd.num_points = num_points;

9 new_obj = otype->ops->create(NULL, &pcd, &h1, &h2);

10 ...

11 }

12
13 static DiaObject *polyline_create(Point *startpoint, void *user_data,

14 Handle **handle1, Handle **handle2) {

15 MultipointCreateData *pcd = (MultipointCreateData *)user_data;

16 polyconn_init(poly, pcd->num_points);

17 ...

18 }

19
20 void polyconn_init(PolyConn *poly, int num_points) {

21 // potential integer overflow

22 poly->points = g_malloc(num_points * sizeof(Point));

23 ...

24 }

(b) dia-0.97.3

Figure 8: An integer overflowbug india-0.97.3 and a signature
vulnerability from Juliet test suite.

Table 2 shows the vulnerabilities discovered by Tracer. We
observed that Tracer can detect various types of vulnerabilities
using signatures from different sources including known CVEs or
synthetic vulnerabilities. Most of the detected vulnerabilities have
high similarity scores. We will discuss the detailed distribution of
the scores in the next section.

Tracer is able to detect new vulnerabilities that are similar
to known ones. Figure 7 shows a vulnerability found in libplib1.
The signature that gives the highest score for the case is sam2p

in Figure 1(b) which is itself a recurring vulnerability similar to

1 int main(void) {

2 char *ptr_h;

3 char h[64];

4 ptr_h = getenv("HOME");

5 if (ptr_h != NULL) {

6 // potential buffer overflow

7 sprintf(h, "Your␣home␣directory␣is:␣%s␣!", ptr_h);

8 printf("%s\n", h);

9 }

10 return 0;

11 }

(a) OWASP tutorial
1 XrmDatabase resource_buildDatabase(...) {

2 char locale1[100];

3 char loc_lang[100];

4 char *locale = getenv("LC_ALL");

5 String s = getenv("XUSERFILESEARCHPATH");

6 char *cP = loc_lang;

7 char *cL = locale;

8 ...

9 while (*cL) {

10 ...

11 *cP++ = *cL++;

12 }

13 *cP = 0;

14
15 if (s == NULL || !strcasecmp(s, "False")) {

16 // potential buffer overflow

17 sprintf(locale1, "noint:%s%s", loc_lang, ...);

18 ...

19 }

20 }

(b) gv-3.7.4
Figure 9: A buffer overflow bug in gv-3.7.4 and a signature

vulnerability from an OWASP tutorial.

1 generic *gp_alloc(size_t size, ...) { /* wrapper of malloc */ }

2
3 static int LUA_init_lua(void) {

4 char *script_fqn;

5 char *gp_lua_dir = getenv("GNUPLOT_LUA_DIR");

6 ...

7 // allocation with a large enough length

8 script_fqn = gp_alloc(strlen(gp_lua_dir) + ... + 2, ...);

9 // potential buffer overflow (false alarm)

10 sprintf(script_fqn, "%s%c%s", gp_lua_dir, ...);

11 ...

12 }

(a) gnuplot-5.2.8
1 SHPHandle SHPAPI_CALL SHPOpenLL(...) {

2 SHPHandle psSHP;

3 uchar *pabyBuf = (uchar *)malloc(100);

4 fread(pabyBuf, 100, 1, psSHP->fpSHX);

5 psSHP->nRecords = pabyBuf[27] + pabyBuf[26] * 256 + ...;

6 ...

7 // bound checking

8 if (psSHP->nRecords > 256000000) {

9 return (NULL);

10 }

11 ...

12 // false alarm (integer overflow)

13 int32 *panSHX = (int32 *)malloc(sizeof(int32) * 2 * psSHP->nRecords);

14 }

(b) grass-7.8.2
Figure 10: False alarms filtered by the similarity measure of

Tracer

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 2: List of new vulnerabilities detected by Tracer. #Bugs reports the number of bugs by root causes, Signature shows the

sources of vulnerability signatures and Score represents the similarity scores between the bugs and the signatures."indicates

the vulnerabilities whose CVE IDs have been assigned. Type indicates the type of bugs (IO: integer overflow, IU: integer

underflow, BO: buffer overflows, CI: command injection, FO: format string bug, UAF: use-after-free, DF: double-free).

Program #Bugs Type Score Signature CVE

4ti2 1 IO 0.71-1.00 Juliet-CWE190 -
abyss 1 IO 0.82 Juliet-CWE190 -
alsa-utils 1 DF 1 Juliet-CWE415 -
bowtie2 1 IO 0.74 CVE-2017-9181 -
bsdutils 1 CI 0.86 CVE-2016-10729 -
bsdutils 1 IO 1 Juliet-CWE190 "

bwbasic 1 BO 0.44 CVE-2018-1100 -
coinor-libcgl1 1 IO 0.87 Juliet-CWE190 -
coinor-libclp1 1 IO 1 Juliet-CWE190 -
crafty 1 IO 0.86 CVE-2017-1000229 -
cron 1 CI 0.68 OWASP tutorial -
crrcsim 2 IO 0.85-0.90 CVE-2017-16663 -
darktable 3 IO 1 Juliet-CWE680 -
dcraw 1 IO 0.93-0.94 CVE-2017-9181 "

dia 1 IO 1 Juliet-CWE190 "

drawxtl 1 IO 0.79 CVE-2017-9181 -
dvbstreamer 1 BO 1 OWASP tutorial -
elvis-tiny 2 BO 0.50-1.00 OWASP tutorial -
gap-guava 1 IO 1 Juliet-CWE190 -
gnuplot 2 FS 0.82 Juliet-CWE134 -
grass 8 BO 0.41-1.00 OWASP tutorial -
groff 1 IO 1 Juliet-CWE190 -
gv 1 BO 1 OWASP tutorial -
htmldoc 2 IO 0.90-0.95 CVE-2017-9181 "

hugin 2 IO 0.87-1.00 Juliet-CWE190 -
ispell 2 BO 1 OWASP tutorial -
libaudio2 1 BO 1 OWASP tutorial -
libfreeimage3 1 BO 0.83 CVE-2017-6313 -
libkrb5support0 1 IO 1 Juliet-CWE190 -
liblinear-tools 1 BO 0.3 CVE-2018-1100 -
liblinear-tools 1 IO 0.93-1.00 Juliet-CWE190 -
liblrs0 1 IO 0.91 Juliet-CWE191 -
libmjpegutils-2.1-0 1 BO 1 OWASP tutorial -
libmount1 1 CI 0.72 CVE-2015-9059 -
libmount1 1 IO 1 Juliet-CWE190 -
libpano13-3 1 FS 0.59 mp3rename-0.6 [20] "
libpano13-3 1 IO 0.87 CVE-2017-16663 -
libplib1 5 IO 0.76-0.93 shntool-3.0.5 [20] "

libquicktime2 1 IO 0.85-0.95 CVE-2017-9181 -

Program Bugs Type Score Signature CVE

lp-solve 1 IO 1 Juliet-CWE190 -
mailutils 1 UAF 1 Juliet-CWE415 -
mdadm 1 BO 0.16 CVE-2019-14523 -
minidlna 1 IO 0.94 Juliet-CWE190 -
nageru 1 IO 0.87 CVE-2017-16663 -
nedit 1 BO 1 OWASP tutorial -
newmail 1 FS 0.82 Juliet-CWE134 -
nickle 1 BO 1 OWASP tutorial -
nickle 1 CI 0.67 Juliet-CWE78 -
octave-nan 3 IO 0.87-1.00 Juliet-CWE190 -
printer-driver-foo2zjs 1 IU 0.94 Juliet-CWE191 -
r-cran-lpsolve 1 IO 1 Juliet-CWE190 -
rawtherapee 4 IO 0.86-1.00 Juliet-CWE680 -
rlwrap 1 CI 0.82 Juliet-CWE78 -
rtcw 1 BO 0.4 CVE-2018-1100 -
sa-exim 1 CI 1 Juliet-CWE78
sane 1 IO 0.87 CVE-2017-9181 -
scheme48 1 IO 0.85 CVE-2009-1570 -
seaview 1 BO 0.56 CVE-2018-1100 -
siril 2 IO 0.87-1.00 Juliet-CWE680 -
siril 1 IU 0.82 Juliet-CWE191 -
snap 2 BO 1 OWASP tutorial -
snap 1 IO 1 Juliet-CWE680 -
stk 1 IO 0.87 shntool-3.0.5 [20] -
sweed 1 IO 1 Juliet-CWE190 -
tcliis 1 BO 1 OWASP tutorial -
tome 1 FS 0.96 CVE-2015-8106 -
vacation 1 CI 0.67 Juliet-CWE78 -
w3m 1 FS 0.96 CVE-2015-8106 -
wily 5 BO 0.47-1.00 OWASP tutorial -
xbuffy 1 BO 1 OWASP tutorial -
xfig 2 BO 1 OWASP tutorial -
xsane 1 IO 0.87-1.00 Juliet-CWE190 -
xwpe 1 BO 1 OWASP tutorial -
xwpe 1 CI 0.87 Juliet-CWE78 -
xwpe 3 IO 0.87-0.89 Juliet-CWE190 -
zangband 1 BO 0.77 CVE-2017-6313 -
zangband 1 FS 0.97 CVE-2015-8106 -
zangband 1 IO 0.93 CVE-2017-9181 -

the one in Figure 1(a). We also notice that Tracer can effectively
discover real-world security bugs using synthetically generated
toy examples. Figure 8 shows an integer overflow vulnerability
in dia detected by Tracer and a signature vulnerability from the
Juliet test suite. Notice that they have completely different syntactic
structures. For example, the vulnerability in dia involves three
function calls including one indirect call, as well as complicated
pointer dereferences. On the other hand, synthetic code has an
extremely simple structure. However, they have the same root
cause of the vulnerabilities. Both of the programs read an external
input using fscanf, and cause an integer overflow by multiplying
the input value with another integer value. Tracer exactly detects

the same vulnerable behavior from the two programs and sets the
similarity score to 1.0.

For other types of vulnerabilities, Tracer can also detect re-
curring vulnerabilities that are similar to existing ones. Figure 9
depicts a buffer overflow error in gv. This bug happens because
the program reads an untrusted string using getenv that is used to
construct a new string via sprintf. The vulnerable behavior is de-
scribed in a tutorial by OWASP [36]. Likewise, Tracer detects one
use-after-free and one double-free bug similar to examples in the
Juliet test suite. While the example codes are simple, the real-world
vulnerability involves complicated aliases, indirect assignments,
and control flows. Nevertheless, Tracer can find that the essence

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Wooseok Kang, Byoungho Son, and Kihong Heo

0 20 40 60 80 100 120 140

Cumulated number of false alarms

0

50

100

150

200

250

300
C

um
ul

at
ed

nu
m

b
er

of
tr

ue
al

ar
m

s 0.95 0.90 0.85

Figure 11: Ranking effectiveness. Each data point represents

the number of true and false alarms that the user will obtain

when enumerating the sorted alarms by ranking.

of the bug is actually the same as the tutorial examples as the static
analyzer estimates the detailed semantics.

5.2.2 Ranking Effectiveness. Next, we evaluate the effectiveness of
our ranking scheme. For all the manually inspected 424 alarms, we
investigate where true and false positives are located in the bug
reports ranked by their similarity scores.

Figure 11 and the top three rows in Table 3 show that most
of the true positives are highly ranked in the report. While the
underlying static analysis reports 1,975 alarms, only 176 of them
have scores higher than 0.95 (Tracer95). Among them, 154 (87.5%)
are confirmed as true positives. The true positive ratio is still high
(85.7% and 78.1%) if we set the threshold to 0.9 (Tracer90) and
0.85 (Tracer85), respectively. The similarity-based score of Tracer
effectively filters out a large number of false positives while retain-
ing many real bugs. These results indicate that Tracer can help
developers effectively discover recurring vulnerabilities.

Tracer’s similaritymeasure not only prioritizes similar bugs, but
also effectively suppresses false alarms. Figure 10(a) shows an alarm
that is falsely identified by our taint analysis in gnuplot. This alarm
looks similar to the vulnerability in Figure 9(a). However, the call
to sprintf is safe because the program always allocates enough
memory blocks using strlen and multiple addition operations.
These operators are captured by our features and differentiate this
alarm from typical vulnerable patterns. Figure 10(b) shows another
example of a false alarm in grass. The integer overflow will never
occur since there is a bound checking for external user inputs. This
is also captured by one of the high-level features LargerThanConst.
Notice that these features only appear in the false alarm traces,
not in the signatures. This in turn leads to a lower score for these
alarms (0.77–0.88) and ranks them below many other true alarms.

Overall, the experimental results show that Tracer is effective
to detect semantically recurring vulnerabilities. In particular, our
trace-based similarity measure powered by static analysis is robust
to syntactic variants. Thus, Tracer can report recurring vulnera-
bilities with high similarity scores even though two programs have
significantly different syntactic characteristics.

Table 3: Comparison to state-of-the-art approaches. Column

RC, TP, FP and FN report the number of vulnerabilities by

root causes, true positives, false positives and false negatives

reported by each analyzer, respectively.

Analyzer RC TP FP FN Prec (%) Recall (%)

Tracer95 58 154 22 299 87.5 34.0
Tracer90 69 192 32 261 85.7 42.4
Tracer85 87 253 71 200 78.1 55.8
VUDDY𝑂 3 5 7 448 41.7 1.1
VUDDY𝑆 0 0 10 453 0.0 0.0
CCAligner 0 0 150 453 0.0 0.0
CodeQL 86 161 163 292 49.7 35.5
Devign𝑂 - 10 - 443 - 2.2
Devign𝑆 - 0 - 453 - 0.0

5.3 RQ2: Comparison

This section compares the accuracy of Tracer with the state-of-the-
art tools. In the rest of this section, we use Tracer85 for comparison
because all its reports are manually inspected. Since there is no
fully labeled data set for recurring vulnerabilities and it is hard to
manually inspect all vulnerabilities in our benchmarks, we set up a
set of ground truths as follows:
• We ran all the tools (Tracer85, VUDDY, CCAligner, and CodeQL)
and manually inspected the same number of alarms as Tracer85
(i.e., 324). If a tool reports fewer than 324 alarms, we inspected
all of them.
• We collected the true alarms detected by all the tools and included
the true alarms from the random sampling in Section 5.2, which
are not detected by Tracer85.

In total, we collected 453 ground truths and compared the accuracy
of Tracer85 to the other baselines.

Table 3 shows the performance of each analyzer. Note that we
could not use Devign [48], a learning-based approach, to collect
ground truths. Unlike the other tools, Devign does not provide
explainable reports, such as vulnerabilities they are similar to (e.g.,
Tracer, VUDDY, CCAligner) or description of vulnerabilities (e.g.,
CodeQL). Thus, we only investigated whether Devign can detect
any of 453 ground truths.

5.3.1 Comparison to VUDDY andCCAligner. We compared Tracer
against clone-based detectors, VUDDY and CCAligner. For VUDDY,
we established two different settings in ways to collect the vul-
nerability database for clone detection. VUDDYO is based on the
original database provided by the official web service that has 1,764
CVEs as signatures [22]. In order to discard the effect of the quality
of the database per se, we also tried VUDDYS that uses our own
signature database. Following the same methodology as VUDDYO ,
we collected all the vulnerable functions that are patched in the
later versions for the real-world benchmarks, or annotated in the
source code for the synthetic benchmarks. For CCAligner, we fol-
lowed the same setting as VUDDYS . The threshold of CCAligner
is set to 0.85 which is the same setting as used in Tracer.

VUDDY𝑂 reports 7 false positives out of 12 alarms. The reason
for the false alarms is due to a practical issue regarding establishing
their databases. VUDDY𝑂 collects all the modified functions in

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

1 unsigned sget4 (unsigned char *s) {

2 ...

3 return s[0] << 24 | s[1] << 16 | s[2] << 8 | s[3];

4 }

5
6 unsigned get4() {

7 unsigned char str[4] = { 0xff,0xff,0xff,0xff };

8 fread (str, 1, 4, ifp);

9 return sget4((unsigned char *)str);

10 }

11
12 void foveon_load_camf() {

13 unsigned wide = get4();

14 unsigned high = get4();

15 ...

16 // potential integer overflow

17 char *meta_data = (char *) malloc(wide * high * 3/2);

18 ...

19 }

Figure 12: A vulnerability found in dcraw-9.28 and

rawtherapee-5.8.

void badVaSink(char *data, ...) {

va_list args;

va_start(args, data);

vfprintf(stdout, data, args);

va_end(args);

}

(a) Juliet test suite (CWE-134)

void lqt_dump(char * format, ...) {

va_list argp;

va_start(argp, format);

vfprintf(stdout, format, argp);

va_end(argp);

}

(b) libquicktime2-1.2.4

Figure 13: A code clone detected by VUDDY𝑆

patch commits of known CVEs as signatures. However, a single
commit may contain numerous irrelevant modifications. This leads
to spurious signatures that match non-vulnerable functions. In fact,
all of the false positives from VUDDY𝑂 turned out to be the case.

VUDDY𝑂 detects 3 vulnerabilities by reporting 5 function clones.
Among them, Tracer can detect two vulnerabilities but misses one
because there is no similar trace in our signature database. The
commonly detected vulnerabilities are found in dcraw and rawther-
apee, both being exactly the same functions as shown in Figure 12.
The function foveon_load_camf reads wide and high from an ex-
ternal file (line 13–14), and allocates memory after multiplication
(line 17) that can cause a potential integer overflow. VUDDY𝑂 re-
ports that this bug originated from the same vulnerable source
(LibRaw-demosaic-pack-GPL2, CVE-2017-6889). Tracer detected
these vulnerabilities with a high similarity score (0.92) even though
the origin is not in our signature database. Instead, Tracer cap-
tures that the vulnerability is similar to the one in sam2p shown
in Figure 1(b). Notice that the bug from sam2p has a totally differ-
ent syntactic structure from the code in Figure 12. This example
demonstrates that Tracer effectively generalizes known vulnera-
bility patterns to detect unseen ones.

Even though the database is carefully established with only vul-
nerable functions, VUDDY𝑆 reports 10 false alarms and no true
bugs. The behavior of a function often depends on the context in
which it is used. For instance, the function in Figure 13(a) is a signa-
ture in our database. If the argument data, which is passed to the
second argument of vfprintf, can be controlled by an attacker,
this in turn causes format string vulnerability. With this signature,

1 int32_t endianSwapI32(int32_t i) {

2 int32_t tmp = 0;

3 tmp |= ((i >> 24) & (0xff << 0));

4 tmp |= ((i >> 8) & (0xff << 8));

5 tmp |= ((i << 8) & (0xff << 16));

6 tmp |= ((i << 24) & (0xff << 24));

7 return tmp;

8 }

9
10 T readI(FILE *in, ...) {

11 T x;

12 fread((void *)&x, 1, sizeof(T), in);

13 ...

14 if (sizeof(T) == 4) {

15 return endianSwapI32(x);

16 }

17 ...

18 }

19
20 void Ebwt::readIntoMemory(...) {

21 uint32_t _nPat;

22 FILE *_in1;

23 string _in1Str;

24 ...

25 _in1 = fopen(_in1Str.c_str(), "rb"));

26 _nPat = readI<uint32_t>(_in1, ...);

27 // false alarm (integer overflow)

28 _plen.init(new uint32_t[_nPat], _nPat, true);

29 }

Figure 14: A false positive reported by CodeQL recognized as

a potential integer overflow bug in bowtie2-2.3.5.1.

VUDDY𝑆 detects function lqt_dump in Figure 13(b) as a recurring
vulnerability. However, according to our manual investigation, all
the calls to lqt_dump takes only safe format arguments. Therefore
this function is not vulnerable in the context of libquicktime2.

CCAligner reports 150 function clones but does not detect any
vulnerability. Since CCAligner is not designed to find vulnerabilities,
functions that do not have security-sensitive calls are reported.
Similar to VUDDY, CCAligner also detects function clones without
considering their contexts as in Figure 13(b). These lead to a large
number of false positives in vulnerability detection.

Both VUDDY and CCAligner cannot detect most of the recurring
vulnerabilities detected by Tracer. This is mainly because they are
based on syntactic similarity measures at the function-level gran-
ularity. However, most of the vulnerabilities detected by Tracer
involve multiple functions and have significantly different syntac-
tic structures from signatures. Such characteristics in real-world
programs hinder those tools from detecting semantically recurring
vulnerabilities.

5.3.2 Comparison to CodeQL. In this section, we compare Tracer
to CodeQL, which is a static analysis with human-written bug
patterns (i.e., queries). We applied CodeQL with the queries related
to the same types of vulnerabilities as Tracer, that are available in
their repository3. In total, CodeQL reports 3,488 alarms from the
benchmark programs. Among them we inspected 324 alarms.

Our experiments show that Tracer effectively detects recurring
vulnerabilities that are missed by CodeQL. CodeQL reports 161 true
alarms (35.5%) out of 453 ground truths while Tracer85 detects 253

3https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/

https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Wooseok Kang, Byoungho Son, and Kihong Heo

true alarms (55.8%). Interestingly, there are no common vulnera-
bilities detected by both of the analyzers. There are mainly three
reasons:

• Bugs can be detected by both our underlying analysis and Cod-
eQL. However, Tracer filters out them because there is no similar
trace in our signature database.
• Bugs can be detected by only CodeQL but missed by our un-
derlying analysis. This is due to the unsoundness of our imple-
mentation. In particular, we only implemented the semantics of
external libraries (e.g., fread, getenv) that are observed in our
signature database. However, CodeQL supports a wider range of
library models.
• Bugs can be detected by only our analysis but missed by CodeQL.
We conjecture that this is mainly because of their unsound design
choices as usual static bug detectors.

We agree that it is hard to make an apple-to-apple comparison
between Tracer and CodeQL because they are based on different
analysis frameworks, and CodeQL does not use signatures. The
main goal of this comparison is to show that Tracer can accurately
discover nontrivial bugs that are not detected by state-of-the-art
tools.

Tracer85 also has a lower false positive ratio than CodeQL.
Among 324 inspected alarms, CodeQL reports 163 false positives
(50.3%) while Tracer85 has 71 (21.9%). Figure 14 shows a false pos-
itive reported by CodeQL. Function readI reads a number from an
external file, and changes the endianness of the number using func-
tion endianSwapI32. This function involves complicated bitwise
operations but does not incur an integer overflow on variable _nPat
in Ebwt::readIntoMemory. Tracer85 filters out this alarm as its
score is 0.72, which is lower than the threshold. This demonstrates
that Tracer’s similarity score can effectively suppress false alarms
compared to manually designed heuristics used in CodeQL.

5.3.3 Comparison to Devign. This section compares Tracer against
a learning-based vulnerability detector, Devign. Similar to VUDDY
in Section 5.3.1, we instantiated Devign to two settings: 1) Devign𝑂
is trainedwith the training data provided by the authors4, 2)Devign𝑆
is trained with functions in our signature database. We sampled
10,000 vulnerable and 10,000 non-vulnerable functions for the train-
ing of Devign𝑆 .

According to our experiments, Devign𝑂 detects only 10 vulner-
abilities from the ground truths while Devign𝑆 fails to report any
of them. Among the 10 true alarms, 8 of them are also detected by
Tracer85. As in previous work [47], our experiments also show
that the learning-based approach is not practical to find recurring
vulnerabilities. In particular, in our case, many vulnerabilities in-
volve multiple functions. However, Devign classifies vulnerabilities
in function-level granularity, that can lead to a substantial number
of false negatives. Moreover, the results from the learned models
are not explainable. This can significantly degrade the usability of
the vulnerability detection system.

4https://sites.google.com/view/devign

Table 4: The precision of Tracer with different sets of fea-

tures.

W/ High-level Features W/O High-level Features

Threshold TP FP Prec TP FP Prec

0.95 154 22 0.88 154 22 0.88
0.90 192 32 0.86 198 35 0.85
0.85 253 71 0.78 256 79 0.76

5.4 RQ3: Impact of High-level Features

This section conducts a sensitivity study with different sets of
features. We instantiated Tracer with two settings: similarity mea-
sureswith andwithout high-level features. Table 4 shows the impact
of high-level features.

The results show that Tracer’s performance is not fundamen-
tally limited to the choice of high-level features. When high-level
features are disabled, Tracer with threshold 0.95 still reports the
same set of alarms. However, the high-level features often effec-
tively filter out typical false alarms by Tracer with lower thresh-
olds. Tracer with thresholds 0.85 and 0.90 report 10.1% and 8.6%
fewer false positives while retaining all the true alarms, when the
high-level features are used.

5.5 RQ4: Scalability

This section evaluates the scalability of Tracer to large programs.
We measure the whole computation time of the static analysis
and similarity checking for each benchmark. Then, we report the
running time of Tracer according to the size of the programs in
Figure 15.

The results indicate that Tracer is scalable to large programs. On
average, the static analysis takes 140.42 seconds for each package.
The time spent for the feature vector construction and similarity
computation is at most 2.71 seconds which is a negligible cost
compared to the overall procedure. Although the analysis finishes
within 20 minutes for most of the packages, some packages take
considerably more time than the average. For example, hugin takes
about 53 minutes. This is mainly because of the imprecision of func-
tion pointer resolution that leads to analyzing too many functions
via spurious indirect calls. Another exceptional example is gettext
that takes only 91 seconds while it comprises 982K lines of code.
Despite the huge code size, the program consists of a large number
of small library functions. Thus, the modular analysis can be highly
parallelized.

6 RELATEDWORK

Ourwork is inspired by a large body of research on recurring vulner-
ability detection. All the existing work aims at discovering recurring
vulnerabilities via code reuse [23, 26, 29, 38, 47]. These approaches
transform buggy code fragments within a certain boundary (e.g.,
functions) into various forms of vulnerability signatures such as
hashes [23, 26] or dependency graphs [38, 47]. Then they search
for similar representations of code fragments in the programs un-
der investigation. On the other hand, Tracer is designed to detect
vulnerabilities that share the semantically same root cause. We use
a sophisticated static analysis that captures vulnerable semantics
along arbitrarily long paths.

https://sites.google.com/view/devign

Tracer: Signature-based Static Analysis for Detecting Recurring Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

0.0 0.2 0.4 0.6 0.8 1.0

Size of program (MLOC)

0

500

1000

1500

2000

2500

3000
T

im
e(

s)

Figure 15: Running time of Tracer by program size.

Recently, several approaches have been proposed to detect vul-
nerabilities using learning methods [30, 31, 48]. They learn models
to capture the characteristics of a variety of forms of code such
as bug patches, program slices, or abstract syntax trees. Then, the
learned models predict whether a slice or a function in a target
program is vulnerable or not. Unlike our work, the learning-based
approaches aim at general-purpose vulnerability detection. Accord-
ing to the literature, these approaches are not effective to detect
recurring vulnerabilities [47]. This is also demonstrated by our ex-
periments. The state-of-the-art learning-based approaches cannot
detect all the recurring vulnerabilities that Tracer reports with
high similarity scores.

Most of the existing static analyses that take into account code
patterns highly rely on manual design [2, 3, 18]. FindBugs [3],
SpotBugs [1], and ErrorProne [18] specify hundreds of human-
written patterns each of which describes a specific buggy scenario.
To reduce the engineering burden, CodeQL [2] introduces a query
language to succinctly define bug patterns on top of their static
analysis. However, it is still nontrivial for ordinary developers to
write desired queries for their own purposes without static analysis
expertises [32]. Instead of relying on manually written queries,
Tracer automatically captures vulnerable patterns from data that
provides an accessible framework for developers.

Researchers have proposed many techniques to detect code
clones ranging from syntactic ones [9, 24, 40, 43, 46] to seman-
tic ones [17, 25, 27, 41, 45]. Since their goal is to detect generally
similar code fragments, they are not suitable for accurately find-
ing recurring vulnerabilities even via code reuse [26, 47]. Instead,
our work is designed to detect semantically similar vulnerabilities
between two programs using a static analysis combined with a
trace-based similarity measure.

Our similarity checking method can be understood as an alarm
(or, analysis results, in general) ranking system for static analy-
sis. There have been many alarm ranking methods proposed to
lower the user’s alarm inspection burdens. Existing approaches
rank alarms by their confidence [6, 28, 35, 39], expected reactions
from developers [19] or relevance to a specific commit [21]. Further-
more, recent approaches [6, 21, 39] incorporate user feedback on
alarms and prioritize correlated alarms within programs. However,
to our best knowledge, none of the existing work ranks alarms by
similarity to a specific known vulnerability across programs.

7 CONCLUSION

We proposed Tracer, a framework for detecting semantically re-
curring vulnerabilities. Tracer is based on a static analysis that
discovers potentially vulnerable traces in a target program. Each
candidate trace is then compared with known vulnerabilities col-
lected from various sources. Our empirical study shows that Tracer
can accurately detect semantically similar vulnerabilities from a
variety of open source programs. We anticipate that Tracer will
allow developers to easily prevent recurring vulnerabilities without
requiring static analysis expertise.

ACKNOWLEDGMENTS

This work was partly supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT)(No. 2021R1A5A1021944, 2021R1C1C1003876) and Institute
for Information & Communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government (MSIT) (No.
2021-0-00758, Development of Automated Program Repair Technol-
ogy by Combining Code Analysis andMining, and No.2022-0-01202,
Regional strategic industry convergence security core talent train-
ing business).

REFERENCES

[1] Spotbugs. https://spotbugs.github.io, 2021.
[2] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. Ql:

Object-oriented queries on relational data. In European Conference on Object-
Oriented Programming (ECOOP 2016), 2016.

[3] Nathaniel Ayewah, David Hovemeyer, J David Morgenthaler, John Penix, and
William Pugh. Using static analysis to find bugs. IEEE Softw., 25, 2008.

[4] Paul Black. Juliet 1.3 test suite: Changes from 1.2. NIST Technical Note, 8 2018.
[5] Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier

for memory safety of c programs. In NASA Formal Methods - Third International
Symposium (NFM), volume 6617. Springer, 2011.

[6] Tianyi Chen, Kihong Heo, and Mukund Raghothaman. In 29th ACM Joint Eu-
ropean Software Engineering Conferenceand Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM.

[7] CodeQL. Codeql cwe queries. https://github.com/github/codeql/tree/main/cpp/
ql/src/Security/CWE, 2021.

[8] CodeQL. TaintedAllocationSize.ql. https://github.com/github/codeql/blob/main/
cpp/ql/src/Security/CWE/CWE-190/TaintedAllocationSize.ql, 2021.

[9] James R Cordy and Chanchal K Roy. The NiCad clone detector. In The 19th IEEE
International Conference on Program Comprehension (ICPC 2011). IEEE Computer
Society, 2011.

[10] The MITRE Corporation. Common vulnerabilities and exposures, 2021.
[11] The MITRE Corporation. Common weakness enumeration, 2021.
[12] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup: Precise static detection

of common vulnerabilities in firmware. In Proceedings of the Twenty-Third In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018. ACM,
2018.

[13] Debian. Debian packages. https://packages.debian.org/sid/, 2021.
[14] Will Dietz, Peng Li, John Regehr, and Vikram S Adve. Understanding integer

overflow in c/c++. In 34th International Conference on Software Engineering (ICSE
2012). IEEE Computer Society, 2012.

[15] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. Asm2vec:
Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019.

[16] The OWASP Foundation. Attacks. https://owasp.org/www-community/attacks/,
2021.

[17] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic
clones. In 30th International Conference on Software Engineering (ICSE 2008). ACM,
2008.

[18] Google. Error prone. https://errorprone.info, 2021.
[19] Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. Finding patterns in static

analysis alerts: improving actionable alert ranking. In 11th Working Conference
on Mining Software Repositories (MSR 2014). ACM, 2014.

https://spotbugs.github.io
https://github.com/github/codeql/tree/main/cpp/ql/src/Security/CWE
https://github.com/github/codeql/tree/main/cpp/ql/src/Security/CWE
https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/CWE-190/TaintedAllocationSize.ql
https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/CWE-190/TaintedAllocationSize.ql
https://packages.debian.org/sid/
https://owasp.org/www-community/attacks/
https://errorprone.info

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Wooseok Kang, Byoungho Son, and Kihong Heo

[20] KihongHeo, Hakjoo Oh, and Kwangkeun Yi. Machine-learning-guided selectively
unsound static analysis. In Proceedings of the 39th International Conference on
Software Engineering (ICSE 2017). IEEE / ACM, 2017.

[21] Kihong Heo, Mukund Raghothaman, Xujie Si, and Mayur Naik. Continuously
reasoning about programs using differential bayesian inference. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2019). ACM, 2019.

[22] IoTcube. Iotcube. https://iotcube.korea.ac.kr, 2021.
[23] Jiyong Jang, Abeer Agrawal, and David Brumley. Redebug: Finding unpatched

code clones in entire os distributions. In IEEE Symposium on Security and Privacy
(S&P 2012). IEEE Computer Society, 2012.

[24] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane Glondu.
DECKARD: Scalable and accurate tree-based detection of code clones. In 29th
International Conference on Software Engineering (ICSE 2007). IEEE Computer
Society, 2007.

[25] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwangkeun Yi. MeCC: mem-
ory comparison-based clone detector. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE 2011). ACM, 2011.

[26] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. VUDDY: A scalable
approach for vulnerable code clone discovery. In IEEE Symposium on Security
and Privacy (S&P 2017). IEEE Computer Society, 2017.

[27] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication
in source code. In Proceedings of 8th International Static Analysis Symposium (SAS
2001), volume 2126. Springer, 2001.

[28] Ted Kremenek and Dawson R Engler. Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations. In Proceedings of 10th
International Static Analysis Symposium (SAS 2003), volume 2694. Springer, 2003.

[29] Jingyue Li and Michael D Ernst. Cbcd: Cloned buggy code detector. In 34th
International Conference on Software Engineering (ICSE 2012). IEEE Computer
Society, 2012.

[30] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. VulPecker:
an automated vulnerability detection system based on code similarity analysis.
In Proceedings of the 32nd Annual Conference on Computer Security Applications
(ACSAC 2016). ACM, 2016.

[31] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, SujuanWang, Zhijun Deng,
and Yuyi Zhong. VulDeePecker: A deep learning-based system for vulnerability
detection. In 25th Annual Network and Distributed System Security Symposium
(NDSS 2018). The Internet Society, 2018.

[32] Ziyang Li, Aravind Machiry, Binghong Chen, Mayur Naik, Ke Wang, and Le Song.
Arbitrar : User-guided api misuse detection. IEEE Symposium on Security and
Privacy (S&P 2021), 2021.

[33] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. Déjàvu: a map of code duplicates on github. Proc.
ACM Program. Lang., 1, 2017.

[34] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Du-
mitras. The attack of the clones: A study of the impact of shared code on
vulnerability patching. In IEEE Symposium on Security and Privacy (S&P 2015),

2015.
[35] Damien Octeau, Somesh Jha, Matthew Dering, Patrick D. McDaniel, Alexandre

Bartel, Li Li, Jacques Klein, and Yves Le Traon. Combining static analysis with
probabilistic models to enable market-scale android inter-component analysis. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). ACM, 2016.

[36] OWASP. Buffer overflow via environment variables. https://owasp.org/www-
community/attacks/Buffer_Overflow_via_Environment_Variables, 2021.

[37] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. Fuzzing javascript
engines with aspect-preserving mutation. In IEEE Symposium on Security and
Privacy (S&P 2020). IEEE, 2020.

[38] Nam H Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N Nguyen.
Detection of recurring software vulnerabilities. In 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2010). ACM, 2010.

[39] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. User-
guided program reasoning using bayesian inference. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2018). ACM, 2018.

[40] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. Sourcerercc: scaling code clone detection to big-code. In Proceedings of
the 38th International Conference on Software Engineering (ICSE 2016). ACM, 2016.

[41] Abdullah Sheneamer and Jugal Kalita. Semantic clone detection using machine
learning. In 15th IEEE International Conference on Machine Learning and Applica-
tions (ICMLA 2016). IEEE Computer Society, 2016.

[42] Maddie Stone. Déjà vu-lnerability. https://googleprojectzero.blogspot.com/2021/
02/deja-vu-lnerability.html, 2021.

[43] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K Roy.
CCAligner: a token based large-gap clone detector. In Proceedings of the 40th
International Conference on Software Engineering (ICSE 2018). ACM, 2018.

[44] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek.
Improving integer security for systems with kint. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2012). USENIX Association,
2012.

[45] Huihui Wei and Ming Li. Positive and unlabeled learning for detecting software
functional clones with adversarial training. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI 2018). ijcai.org, 2018.

[46] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
Deep learning code fragments for code clone detection. In Proceedings of the
31st IEEE/ACM International Conference on AutomatedSoftware Engineering (ASE
2016). ACM, 2016.

[47] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, Wei Zou, and Wenchang Shi. MVP: De-
tecting vulnerabilities using patch-enhanced vulnerability signatures. In 29th
USENIX Security Symposium (USENIX Security 2020). USENIX Association, 2020.

[48] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. Devign:
Effective vulnerability identification by learning comprehensive program seman-
tics via graph neural networks. In Neural Information Processing Systems 2019
(NeurIPS 2019), 2019.

https://iotcube.korea.ac.kr
https://owasp.org/www-community/attacks/Buffer_Overflow_via_Environment_Variables
https://owasp.org/www-community/attacks/Buffer_Overflow_via_Environment_Variables
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html
https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Examples
	2.2 Our Approach

	3 Framework
	3.1 Program
	3.2 Generic Taint Analysis
	3.3 Data Dependency Graph and Tainted Traces
	3.4 Feature Vector and Similarity Score

	4 Instantiation
	4.1 Abstract Domains and Semantics
	4.2 Features and Similarity Measure
	4.3 Application to Other Vulnerability Types

	5 Experiment
	5.1 Experimental Setup
	5.2 RQ1: Effectiveness
	5.3 RQ2: Comparison
	5.4 RQ3: Impact of High-level Features
	5.5 RQ4: Scalability

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

