
Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, Sang Kil Cha

Evaluating Directed Fuzzers:
Are We Heading in the Right Direction?

2

Fuzzing

• Testing a program with randomly generated inputs

• Successful achievements

• e.g., AFL, Google’s OSS Fuzz project

Directed Fuzzing

• Aims to test a specific part of the program

• e.g., generate crashing inputs from bug reports

Background

3

Evaluation of Directed Fuzzing
Key metric: How fast does it expose a given target bug?

→ Time-To-Exposure (TTE)

Problem:

• No standards in the directed fuzzing evaluation

• Pitfalls specific to directed fuzzing are often overlooked

→ An obstacle to the transparency and reproducibility of the evaluation

Background

Survey: Evaluation process of 14 directed fuzzing papers
Experiment: 5 state-of-the-art directed fuzzers on 12 widely used benchmarks

Findings:

• 5 pitfalls in each step of the evaluation process

• 5 lessons for transparent and reproducible evaluations

4

Pitfalls of Evaluating Directed Fuzzers

Process of Directed Fuzzing Evaluation

5

Crash Triage

Statistical TestTarget Bug Preprocess

Crash Triage

Repetitions

Target Site

Process of Directed Fuzzing Evaluation

6

Crash Triage

Statistical TestTarget Bug Preprocess

Crash Triage

Repetitions

Target Site

Pitfall 1 Pitfall 3
Pitfall 2

Pitfall 4

Pitfall 5

7

Crash Triage

Target Bug Preprocess

Crash Triage

Repetitions

Target Site

Pitfall 1 Pitfall 3

Pitfall 4

Pitfall 5
Pitfall 2

Pitfall 1: Target Site

Statistical Test

Target site selection from the given target bug is complicated

Current Practice: Most papers specify target bugs with *CVE IDs (12 out of 14)

Problem:

• Target bug is the goal of the evaluation, not the goal of the directed fuzzer

• Most directed fuzzers take target line as an input, instead of target bug

→ Such discrepancy may cause inconsistent results

Pitfall 1: Target Site

8
*Common Vulnerabilities and Exposure

 1 int do_type(work_stuff *work, char **mangled)
 2 int n;
 3 switch (**mangled) {
 4 case 'T':
 5 get_count (mangled, &n);
 6 remembered_type = work->typevec[n]; // Crash Site 1
 7 ...
 8 case 'B':
 9 get_count (mangled, &n);
10 string_append (result, work->btypevec[n]); // Crash Site 2
11 }
12 }

-1

Ex) *CVE-2016-4492: Bug with two crashing sites

9

-1

Pitfall 1: Target Site

*Used in 6 out of 14 papers

10

Pitfall 1: Target Site

Q. Why not choose any line?
A. The results differ significantly

Target Line AFLGo Beacon WindRanger SelectFuzz DAFL

Line 6 373 333 2,460 432 787

Line 10 332 499 339 581 149

* Median TTE of 160 repetitions in seconds

6 out of 12 papers report only the CVE IDs

Report the exact target line provided to the directed fuzzers

11

Pitfall 1: Target Site

12

Crash Triage

Target Bug Preprocess

Crash Triage

Repetitions

Target Site

Pitfall 1 Pitfall 3

Pitfall 4

Pitfall 5
Pitfall 2

Pitfall 2: Crash Triage

Statistical Test

TTE is dependent on the details of the triage logic

Current Practice: Sanitizer-based triage

• Utilizing sanitizer logs such as ASAN reports (crash type, stack trace)

• Compare the found crashing input with

• Description of the CVE

• Sanitizer log of the *POC input provided in the CVE report

Problem: Deciding the details of the comparison is not trivial

Pitfall 2: Crash Triage

13

ERROR: AddressSanitizer: heap-buffer-overflow …
#0 in parseSWF_RGBA parser.c:66
#1 in parseSWF_MORPHGRADIENTRECORD parser.c:746
 ...
#6 in blockParse blocktypes.c:145
#7 in readMovie main.c:265
#8 in main main.c:350

*Proof of Concept

14

Ex) CVE-2016-9831
 1 void parseSWF_MORPHGRAD(FILE *f, SWF_MORPHGRAD *g) {
 2 ...
 3 g->NumGradients = readUInt8(f);
 4 for (i = 0; i < g->NumGradients; i++)
 5 parseSWF_MORPHGRADREC(f, &(g->GradientRecords[i]));
 6 }
 7
 8 void parseSWF_MORPHGRADREC(FILE *f, SWF_MORPHGRADREC *r) {
 9 r->StartRatio = readUInt8(f);
10 parseSWF_RGBA(f, &r->StartColor);
11 }
12
13 void parseSWF_RGBA(FILE *f, SWF_RGBA *rgb) {
14 rgb->red = readUInt8(f);
15 rgb->green = readUInt8(f);
16 }

POC in the CVE report crashes here
CVE report mentions this line too

Same bug can also crash here

Pitfall 2: Crash Triage
CVE report:
“Heap-based buffer overflow in the parseSWF_RGBA function”

NumGradients is not validated

15

 1 void parseSWF_MORPHGRAD(FILE *f, SWF_MORPHGRAD *g) {
 2 ...
 3 g->NumGradients = readUInt8(f);
 4 for (i = 0; i < g->NumGradients; i++)
 5 parseSWF_MORPHGRADREC(f, &(g->GradientRecords[i]));
 6 }
 7
 8 void parseSWF_MORPHGRADREC(FILE *f, SWF_MORPHGRADREC *r) {
 9 r->StartRatio = readUInt8(f);
10 parseSWF_RGBA(f, &r->StartColor);
11 }
12
13 void parseSWF_RGBA(FILE *f, SWF_RGBA *rgb) {
14 rgb->red = readUInt8(f);
15 rgb->green = readUInt8(f);
16 }

POC in the CVE report crashes here
CVE report mentions this line too

Same bug can also crash here

Pitfall 2: Crash Triage

NumGradients is not validated

Ex) CVE-2016-9831

Lines Checked AFLGo Beacon WindRanger SelectFuzz DAFL
14 1,418 1,069 487 1,777 1,218
14,15 167 177 174 218 103
14,15, 9 159 155 155 200 93

16

Only 5 papers disclose the details of the triage logic

Clearly specify crash triage logic and disclose its code

Pitfall 2: Crash Triage

17

Crash Triage

Target Bug Preprocess

Crash Triage

Repetitions

Target Site

Pitfall 1 Pitfall 3

Pitfall 4

Pitfall 5
Pitfall 2

Pitfall 3: Preprocessing

Statistical Test

Omitting preprocessing time can be misleading

Current Practice: Most directed fuzzers utilize static analysis (12 out of 14)

Problem:

• Static analysis time is often not a one-time cost

• Static analysis time can be greater than the fuzzing time

Only 3 papers fully disclose the static analysis time

Report end-to-end time of evaluation to better understand the performance

18

Pitfall 3: Preprocessing

19

Crash Triage

Target Bug Preprocess

Crash Triage

Repetitions

Target Site

Pitfall 1 Pitfall 3

Pitfall 4

Pitfall 5
Pitfall 2

Pitfall 4: Repetitions

Statistical Test

Randomness has severe impact in directed fuzzing

Regular Fuzzing: Measures the coverage rate or the number of found bugs
Directed Fuzzing: Measures the found time of a specific target bug

Current Practice: All papers repeat experiments multiple times
Problem: The number of repetitions is often not enough

Pitfall 4: Repetitions

20

Ex) CVE-2016-4490: Moderate case without timeouts

• Repeated 160 times, grouped by 10, 20, and 40 repetitions

• Compared the median TTE of each groups

Pitfall 4: Repetitions

21

22

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

AFLGo Beacon WindRanger SelectFuzz DAFL

0
50

100
150
200

1 2 3 4 5 6 7 8
0

50
100
150
200

1 2 3 4

10 Reps

40 Reps20 Reps

Pitfall 4: Repetitions

The number of repetition is 16 on average, 10 or less for half of the papers

Repeat at least 20 times or more

23

Pitfall 4: Repetitions

24

Crash Triage

Target Bug Preprocess

Crash Triage

Repetitions

Target Site

Pitfall 1 Pitfall 3

Pitfall 4

Pitfall 5
Pitfall 2

Pitfall 5: Statistical Testing

Statistical Test

Usage of inappropriate statistical test can mislead the conclusion

Current Practice:
Utilize the Mann-Whitney U (MWU) test to check the significance of the result

Problem: MWU cannot handle data from “unobserved” events (e.g., Timeouts)

• Choice 1: Provide the time limit as TTE

• Choice 2: Eliminate timeout cases from the result

Pitfall 5: Statistical Testing

25

Imprecise
Biased

TT
E

(s
)

0

3,000

6,000

9,000

12,000

Sorted Repetitions

20 40 60 80 100 120 140 160

AFLGo DAFL

Ex) CVE-2017-9988

26

Statistics AFLGo DAFL
Median TTE 1,066 703
MWU test p-value < 0.05
Timeouts 1 17
Logrank test p-value > 0.50
* p-value: A statistical test result is considered to be significant 
 if the p-value is less than 0.05

* Logrank test: Statistical test used in survival analysis. 
 Correctly handles timeout cases.

Pitfall 5: Statistical Testing

Speed ↑

Success
Rate ↑

TT
E

(s
)

0

3,000

6,000

9,000

12,000

Sorted Repetitions

20 40 60 80 100 120 140 160

AFLGo DAFL

Ex) CVE-2017-9988

27

Statistics AFLGo DAFL
Median TTE 1,066 703
MWU test p-value < 0.05
Timeouts 1 17
Logrank test p-value > 0.50
* p-value: A statistical test result is considered to be significant 
 if the p-value is less than 0.05

* Logrank test: Statistical test used in survival analysis. 
 Correctly handles timeout cases.

Pitfall 5: Statistical Testing

8 papers rely on the MWU test

Use the Logrank test and cactus plot rather than the MWU test

28

Pitfall 5: Statistical Testing

Lessons for evaluation of directed fuzzing
Report the exact target line provided to the directed fuzzers

Specify crash triage logic and disclose its code

Report end-to-end time of evaluation including the preprocessing time

Repeat at least 20 times or more to mitigate randomness

Use the Logrank test and cactus plot rather than the MWU test

More details in the Paper!

Summary

29

Artifact Link

