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Abstract—We present a machine-learning-based technique for
selectively applying unsoundness in static analysis. Existing bug-
finding static analyzers are unsound in order to be precise and
scalable in practice. However, they are uniformly unsound and
hence at the risk of missing a large amount of real bugs. By being
sound, we can improve the detectability of the analyzer but it
often suffers from a large number of false alarms. Our approach
aims to strike a balance between these two approaches by
selectively allowing unsoundness only when it is likely to reduce
false alarms, while retaining true alarms. We use an anomaly-
detection technique to learn such harmless unsoundness. We
implemented our technique in two static analyzers for full C. One
is for a taint analysis for detecting format-string vulnerabilities,
and the other is for an interval analysis for buffer-overflow
detection. The experimental results show that our approach
significantly improves the recall of the original unsound analysis
without sacrificing the precision.
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I. INTRODUCTION

Any realistic bug-finding static analyzers are designed to
be unsound. Ideally, a static analyzer is expected to be sound,
precise, and scalable; that is, it should be able to consider all
program executions and hence do not miss any intended bug
while avoiding false positives and scaling to large programs.
In reality, however, achieving the three at the same time
is extremely challenging, and therefore existing commercial
static analysis tools (e.g., [1]) and published static bug-finders
(e.g., [2], [3], [4], [5], [6]) trade soundness in order to obtain
acceptable performance in precision and scalability.

To our knowledge, all of the existing unsound analysis tools
are uniformly unsound. For instance, since loops and unknown
library calls are major sources of imprecision in static anal-
ysis, most static bug-finding tools compromise soundness in
analyzing them (e.g., [2], [3], [4], [5], [6]); loops are unrolled
for a fixed number of times and subsequent loop iterations are
ignored entirely, and unknown library calls are considered as
pre-defined behaviors such as skip. All of these approaches are
uniformly unsound in that they ignore every loop and library
call in a given program regardless of their different conditions.

However, this uniform approach to unsoundness has a
considerable shortcoming; it causes the analysis to miss a
significant amount of real bugs. For instance, our taint analysis
for detecting format-string vulnerabilities ignores the possible
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data flows of all unknown library calls in the program and
therefore only report 5 false alarms in the 13 benchmark C
programs (Section V). However, it only managed to detect 16
bugs among the 106 potentially detectable format-string bugs.
In other words, this unsound analysis has low false positive
rate (FPR = #False Alarms

#All Alarms ) but it has high false negative rate
(FNR = #Missing Bugs

#All Bugs ).
On the other hand, a simple-minded, uniformly sound

analysis poses the opposite problem; it has low FNR at the
cost of high FPR. For example, a simple solution to decrease
the FNR of the unsound taint analysis is to modify the analysis
to consider the potential data flows of every unknown library
call in the program. This uniformly sound analysis is able
to find all 106 bugs in the benchmark programs. However, it
reports 276 false alarms too.

Our work is to reduce the FNR of an unsound bug-finder
while maintaining the original (low) FPR by being selectively
unsound only when it is likely to be harmless. For example,
we unsoundly analyze library calls only when it is likely to
reduce FPR while maintaining low FNR. With our approach,
the selectively unsound taint analysis reports 92 real bugs
(among 106) with 27 false alarms only.

We achieve this by using a machine learning technique that
is specialized for anomaly detection [7]. Our key insight is
that the program components (e.g., loops and library calls) that
produce false alarms are alike, predictable, and sharing some
common properties. Meanwhile, the real bugs are often caused
by different reasons that are atypical and unpredictable in their
own ways (Section III-B2) [8]. Based on this observation, we
aim to capture the common characteristics of the harmless and
precision-decreasing program components by using one-class
support vector machines. The entire learning process in our
approach (i.e. generating labelled data and learning a classifier)
is fully automatic once a codebase with known bugs is given.

The experimental results show that our method effectively
reduces false negatives of the baseline analyzer without sacri-
ficing its precision. We evaluated our method with two realistic
static analyzers for C and open-source benchmarks. The first
experiment is done with a taint analysis for finding out format-
string bugs. In our benchmarks with 106 bugs, the baseline,
uniformly unsound analysis detects 16 bugs with 5 false alarms
(FPR: 24%, FNR: 85%). Uniformly improving the soundness
impairs the precision too much: it reports 106 real bugs with



str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
skip;

size = positive_input();
for(i=0; i<size; i++)
skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:

• We present a new approach of selectively employing
unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";
i = 0;
if (!str[i]) // buffer access 1

skip;

size = positive_input();
i = 0;
if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis

On the other hand, a sound interval analysis can detect the
bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+∞], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+∞] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis

Our selectively unsound analyzer applies unsoundness only
to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1

skip;

size = positive_input();
for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.



D. Our Learning Approach

We achieve the selectively unsound analysis via machine
learning-based anomaly detection. Assume that we have a
codebase and a set of features. The codebase is a set of
programs in which all the bugs are found and their locations
are annotated so that we can classify alarms into true or
false alarms. Then, we need to decide which set of program
components to apply unsoundness selectively. In our example,
it is the set of loops in the program we want to analyze.
The features in this case describe general characteristics of
the loops.

The learning phase consists of three steps.

1) We collect harmless loops from the codebase. A loop is
harmless if unsoundly analyzing the loop does not cause
to miss real bugs but reduces false alarms. For simplicity,
we assume there is only one program in the codebase,
and the program contains n loops. When analyzed
soundly, it reports certain number of true alarms and
false alarms. Then, we examine each loop by replacing
it with an if-statement (i.e., unrolling) one by one and
compare the result to that of the original program. If
the replacement of a loop makes the number of true
alarms remain same, but makes the number of false
alarms decrease, we consider the loop to be harmless.
We collect all the loops satisfying the condition.

2) Next, we represent the loops as feature vectors. Once
all the harmless loops in the codebase are collected,
we create a feature vector for each loop using the set
f = {f1, f2, . . . , fk} where fi is a predicate over loops.
For example, f1 may indicate whether a loop has a
conditional statement containing nulls.

3) Finally, having the generated feature vectors as training
data, we learn a classifier that can distinguish such harm-
less loops. We use one-class classification algorithm [7]
for learning the classifier that requires only positive
examples (i.e., harmless loops). We use the anomaly
detection algorithm to learn the common characteristics
and regularities of the harmless loops.

In the testing phase, the classifier takes the feature vectors
of all the loops in a new program as an input. If the classifier
considers a loop to be harmless, then the loop is analyzed
unsoundly, meaning that it is unrolled once and replaced with
an if-statement. Otherwise, if the classifier considers a loop to
be harmful (i.e., anomaly), then the loop is analyzed soundly.

III. OUR TECHNIQUE

Our goal is to find harmless components and selectively
employ unsoundness only to them. In this section, we describe
how to build a selectively unsound static analyzer in detail.
First, we introduce a parameterized static analysis that applies
unsoundness only to certain program components. Then, we
explain how to learn a statistical model from an existing
codebase, which is used to derive a soundness parameter.

A. Parameterized Static Analysis

Our analysis employs a parameterized strategy for selecting
the set of program components that will be analyzed soundly.
This is a variant of the well-known setting for the parameter-
ized static analysis [9], [10], except the parameter controls the
soundness of the analysis, not the precision.

Let P ∈ Pgm be a program that we want to analyze. CP
is the set of program points in P . JP is the set of program
components such as the set of loops, the set of library calls,
or the set of other operations in P . In the rest of this section,
we omit the subscript P from CP and JP when there is no
confusion.

The selectively unsound static analyzer is a function

F : Pgm × ℘(J)→ ℘(C)

which is parameterized by the soundness parameter π ∈ ℘(J)
(i.e. a set of program components). Given a program P and its
parameter π, the analyzer outputs alarms (i.e. a set of program
points).

A soundness parameter π ∈ ℘(J) is a set of program
components which need to be analyzed soundly. In other
words, it selects the program components that are likely to
produce true alarms as a result of detecting real bugs in the
program. For instance, when J = {j1, · · · , jn} is the set of
loops in the program P , ji ∈ π means that the ith loop in
the program is not considered to be harmless; we analyze the
loop as it is rather than unrolling the loop once and ignoring
all the subsequent loop iterations.

We want to find a good soundness parameter which al-
lows the analyzer to apply costly soundness only to the
necessary components which are not harmless. Let 1 be the
parameter where every component is selected and 0 be the
parameter where no component is selected. Then, F (P,1)
denotes the analysis that is fully sound, which can detect the
maximum number of the real bugs along with lots of false
alarms. F (P,0) means the fully unsound analysis, reporting
the minimum number of false alarms with risk of missing
many real bugs. For our analysis, it is important to find a
proper parameter which strikes the balance between 1 and 0,
reporting false alarms as few as possible while detecting most
of the real bugs.

B. Learning a Classifier

We want to build a classifier which can predict whether a
given program component is harmless or not. The classifier in
our approach exploits general properties of harmless compo-
nents and uses the information for new, unseen programs.

1) Features: We define features to capture common prop-
erties of program components. Features are either syntactic or
semantic properties of program components, which have either
binary or numeric values. For simplicity, we assume them to
be binary properties: fi : J→ {0, 1}. Given a set of features,
we can derive a feature vector for each program component.
Suppose that we have n features: f = {f1, . . . , fn}. With
the set of features, each program component j ∈ J can be
represented as a feature vector f(j) = 〈f1(j), . . . , fn(j)〉.



Our approach requires analysis designers to come up with
a set of features for each parameterized static analysis F . In
Section IV, we discuss how to construct program features with
two case studies for loops and library calls.

2) Learning Process: A classifier is defined as a function
C : {0, 1}n → {0, 1} which takes a feature vector of a
program component as an input. It returns 1 if it considers
the component to be harmless or 0, otherwise.

We define a modelM : Pgm → ℘(J) that is used to derive
a soundness parameter for a given program as follows:

M(P ) = {j ∈ J | C(f(j)) = 0}.

The model collects the program components that are poten-
tially harmful, which may cause real bugs. With the model,
we run the static analysis for a new, unseen program P :
F (P,M(P )). That is, we first obtain the soundness parameter
M(P ) from the model and instantiate the static analysis with
the parameter. As a result, the analysis becomes sound for the
program components that are selected by the parameter from
the model and unsound for the others.

We learn the model with One-Class Support Vector Machine
(OC-SVM) [7]. OC-SVM is an unsupervised algorithm that
learns a model for anomaly detection: classifying new data
as similar or different to its training data. Our intuition is
that harmless program components tend to be typical, sharing
common properties, whereas harmful components are atypical,
therefore difficult to be characterized. It is because bugs in the
real world are introduced unexpectedly by nature. In addition,
collecting examples for all kinds of bugs is infeasible, whereas
collecting and generalizing the characteristics of harmless
components is relatively easy to achieve. Therefore, we use
this one-class classification method; it only requires positive
examples (e.g., harmless loops) that are expected to share some
regularities, learns such regularities, and classifies new data as
similar or different to its training data.

Note that the characteristics of harmless components are
largely determined by the design choices of a given static
analysis (e.g., abstract domain), whereas that of harmful com-
ponents are not affected by the analysis design. For example,
for an interval analysis of C programs, the following loops are
typically harmless:
• Loops iterating over constant strings:

str=‘‘hello world’’;
for(i=0; !str[i]; i++) // false alarm
...

As explained before, analyzing such loops soundly is
likely to cause false alarms, rather than detecting true
bugs, because of the non-disjunctive limitation of the
interval domain.

• Loops involving variable relationships:
p=malloc(len);
for (i = 0; i < len; i++)
p[i] = ... // false alarm

Sound analysis of this kind of loops is likely to produce
false alarms because of the non-relational limitation of

Algorithm 1 Training data generation
1: T := ∅
2: for all (Pi, Bi) ∈ P do
3: Ai = F (Pi,1)
4: (At, Af ) := (Ai ∩Bi, Ai \Bi)
5: for all j ∈ JPi do
6: A′i = F (Pi,1 \ {j})
7: (A′t, A

′
f ) = (A′i ∩Bi, A′i \Bi)

8: if |A′t| = |At| ∧ |A′f | < |Af | then
9: T := T ∪ {f(j)}

10: end if
11: end for
12: end for

the interval domain. The analysis cannot track the rela-
tionship between the value of len, the value of i, and
the size of buffer p.

3) Generating Training Data: From an existing codebase,
we generate training data for learning the classifier. The train-
ing dataset is composed of a set of feature vectors. Note that
we only collect the feature vectors of harmless components,
because OC-SVM is designed to learn the regularities of
positive examples. The positive examples in our case are the
harmless components.

The codebase of the system is a set of annotated programs
P = {(P1, B1), . . . , (Pn, Bn)}, in which each program Pi is
associated with a set of buggy program points Bi ⊆ CPi

. Once
all the programs in the codebase is annotated accordingly,
we can automatically generate training data for the classifier.
We first applies unsoundness to each component one by one,
runs the analysis, and collects the feature vectors from all
the harmless components in the given codebase. We consider
a program component to be harmless if the number of true
alarms remains same and the number of false alarms is
decreased, when analyzed unsoundly.

The algorithm for generating training data is shown in
Algorithm 1. For each program Pi in the codebase, we run
the fully sound static analysis and classify the output alarms
Ai into true alarms At and false alarms Af (line 3 and 4).
Then, for each program component j ∈ JPi

, we run the static
analysis without the jth component (i.e. 1 \ {j}) (line 6). The
component j is considered to be harmless when the analysis
which is unsound for j still captures all the real bugs (i.e.
|A′t| = |At|) but reports fewer false alarms (i.e. |A′f | < |Af |)
compared to the fully sound analysis (line 8). We collect
feature vectors from all the harmless program components into
the training set T ⊆ {0, 1}n.

IV. INSTANCE ANALYSES

In this section, we present a generic static analysis that is
selectively unsound for loops and library calls as well as a set
of features for them. We have chosen loops and library calls
because they are the main sources of false alarms from real-
world static analyzers and thus often made unsound in practice
(e.g. [2], [3], [4], [5], [6]). In the analysis, loops are unrolled
for a fixed number of times and library calls are simply ignored



Fπ(L := E, s) = s[L(L, s) 7→ V(E, s)]
Fπ(C1;C2, s) = Fπ(C2, Fπ(C1, s))

Fπ(if E C1 C2, s) = Fπ(C1) t Fπ(C2)

Fπ(whilel E C, s) =

{
fix(λX.s t Fπ(C,X)) if l ∈ π
Fπ(C, s) otherwise

Fπ(L := libl(), s) =

{
s[L(L, s) 7→ >] if l ∈ π
s otherwise

Fig. 2. Static analysis selectively unsound for loops and library calls

as skips. Our aim is to selectively unroll and ignore loops and
library calls, respectively, only when doing so is harmless.

We present two instances of the analysis, one for an interval
analysis and the other for a taint analysis. The interval analysis
is used to find out possible buffer-overflow errors, and the taint
analysis is for detecting format string vulnerabilities (i.e. uses
of unchecked user input as format string parameters of certain
C functions such as printf). The soundness of these instance
analyses is tuned by our technique (Section III), where we used
the same set of features designed for the generic analysis.

In Section IV-A, we define the generic analysis with fea-
tures. Section IV-B and Section IV-C present two instances,
namely the interval analysis and the taint analysis.

A. A Generic, Selectively Unsound Static Analysis

1) Abstract Semantics: We consider a family of static
analyses whose soundness is parametric for loops and library
calls. Consider the following simple imperative language:

C → L := E | C1;C2 | if E C1 C2

| whilel E C | L := libl()
E → n | L | allocl(E) | &L | E1 + E2

L → x | ∗E | E1 [E2]

A command is an assignment, sequence, if statement, while
statement, or a call to an unknown library function. In the
program, loops and library calls are labelled and the set of
labels forms J in Section III-A. The parameter space is the
set of all subsets of program labels, i.e., ℘(J). We assume
that labels in the program are all distinct. An expression
is an integer (n), l-value expression (L), array allocation
(allocl(E)) where E is the size of the array to be allocated
and l is the label for the allocation site, address-of expression
(&L), or compound expression (E+E). An l-value expression
is a variable (x) or array access expression (E1 [E2]).

The abstract semantics of the analysis is defined in Figure 2.
The analysis is parameterized by π ∈ ℘(J), a set of labels, and
is unsound for loops and library calls not included in π. The
abstract semantics is defined by the semantic function Fπ :
C×S→ S, where S is the domain of abstract states mapping
abstract locations to abstract values, i.e., S = L → V. The
analysis is generic in that abstract locations (L) and values (V)
are unspecified. They will be given for each analysis instance
in subsequent subsections. We assume that the abstract domain
is accompanied by two functions L : L × S → ℘(L) and
V : E × S→ V, which compute abstract locations and values
of given l-value and r-value expressions, respectively.

The abstract semantics is standard except for the selective
treatment of soundness. For a loop statement (whilel E C),

L = Var + AllocSite
V = I× ℘(L)× ℘(A)
I = {⊥} ∪ {[l, u] | l, u ∈ Z ∪ {±∞}}
A = L× I× I

L(x, s) = {x}
L(∗E, s) = V(E, s).2

L(E1[E2], s) = {a | 〈a, , 〉 ∈ V(E1, s).3}
V(n, s) = 〈[n, n], ∅, ∅〉
V(L, s) =

⊔
{s(l) | l ∈ L(L, s)}

V(allocl(E), s) = 〈⊥, {l}, {〈l, [0, 0],V(E, s).1〉}〉
V(&L, s) = 〈⊥,L(L, s), ∅〉

V(E1 + E2, s) = V(E1, s) +̂ V(E2, s)

Fig. 3. Abstract domain and semantics for interval analysis

L = Var + AllocSite
V = {⊥,>} × ℘(L)

L(x, s) = {x}
L(E1[E2], s) = V(E1, s).2

V(n, s) =

{
〈>, ∅〉 if n ∈ T
〈⊥, ∅〉 otherwise

V(L, s) =
⊔
{s(l) | l ∈ L(L, s)}

V(allocl(E), s) = 〈⊥, {l}〉
V(&L, s) = 〈⊥,L(L, s)〉

V(E1 + E2, s) = V(E1, s) t V(E2, s)

Fig. 4. Abstract domain and semantics for taint analysis

the analysis applies the usual (sound) fixed point computation
(fix is a pre-fixpoint operator) when the label l is included
in the parameter π. When a loop is not included in π, the
analysis ignores the loop and execute the body C only once
(i.e. unrolling the loop once). For unknown library calls, the
analysis conservatively updates the return location L when l
is chosen, i.e., l ∈ π. Otherwise, we completely ignore the
effect of the library call. Thus, π determines how soundly we
analyze the program with respect to loops and unknown library
calls. For instance, when π = J, the analysis is maximally
conservative for loops and library calls, and when π = ∅, the
analysis is completely unsound and ignores all of the loops
and library calls in the program.

2) Features: We have designed a set of features for loops
and library calls, which can be used for instantiating the
generic analysis above. We examined open-source C programs
and identified 37 features (Figure 5) that describe common
characteristics of loops and library calls in typical C programs.

The features are classified into syntactic and semantic
features. A syntactic feature describes a property that can be
checked by a simple syntax analysis. For example, a syntactic
feature characterizes loops whose conditional expressions in-
volve constant values, or library calls whose return type is an
integer. A semantic feature describes a property that requires
a (yet simple) data-flow analysis. For instance, a semantic
feature for loops describes that the loop condition involves
an expression whose value depends on some external input of
the program:

c = input(); // external input



b = c;
while (a < b) { ... }

To figure out that the value of b comes from the external
input, we need to track the data-flow of the external value.
Each feature is either binary or numeric, where all the numeric
features are normalized to a real number between 0 and 1
based on relative quantities within a single program.

We designed those features with generality in mind so that
the features can be reused for different analyses as much as
possible. Note that the features in Figure 5 are not dependent
on a particular static analysis, but describe rather general,
syntactic and semantic program properties. We use the same
set of features for the interval and taint analyses and show that
we can effectively tune the soundness of both analyses with
the single set of features as shown in Section V.

B. Instantiation 1: Interval Analysis

We first instantiate the generic analysis with the interval
domain and use it to find out potential buffer-overflow errors
in the program.

The generic analysis left out the definitions of abstract
locations (L), abstract values (V), and the evaluation functions
for them (L and V). These definitions for the interval analysis
are given in Figure 3. An abstract location is either a variable
or an allocation-site. An abstract value is a tuple of an interval
(I), which is an abstraction of set of numeric values, a points-
to set (℘(L)) and a set of abstract arrays (℘(A)). Abstract
array 〈a, o, s〉 has the abstract location(a ∈ L), offset (o ∈ I),
and size (s ∈ I). The evaluation function L takes an l-
value expression and an abstract state, and computes the set
of abstract locations that the l-value denotes. The function
V(E, s) evaluates to the abstract value of E under s. In the
definition, we write V(E, s).n for the nth component of the
abstract value of V(E).

The analysis reports a buffer-overflow alarm when the index
of an array can be greater than its size according to the analysis
results. For example, consider an expression arr[idx].
Suppose the analysis concludes that arr has an array of
〈l, [0, 0], [5, 10]〉 (i.e. an array of size [5, 10]) and the interval
value of idx is [3, 7]. The analysis raises an alarm at the array
expression because the index value may exceed the size of the
array (e.g. when the size is 5 and the index is 7).

C. Instantiation 2: Taint Analysis

The second instance is a taint analysis for detecting format
string vulnerabilities in C programs. The abstract domain and
semantics are given in Figure 4. The analysis combines a
taint analysis and a pointer analysis, and therefore an abstract
location is still either a variable or an allocation-site. An
abstract value is a tuple of a taint value and a points-to set.
The taint domain consists of two abstract values: > is used to
indicate that the value is tainted and ⊥ represents untainted
values. For simplicity, we model taint sources by a particular
set T ⊆ Z of integers; constant integer n generates a taint
value > if n ∈ T. In actual implementation, > is produced
by function calls that receives user input such as fgets. The

analysis reports an alarm whenever a taint value is involved
in a format string parameter of functions.

V. EXPERIMENTS

We empirically show the effectiveness of our approach on
selectively applying unsoundness only to harmless program
components. We design the experiments to address the fol-
lowing questions:

• Effectiveness of Our Approach: How much is the
selectively unsound analysis better than the fully sound
or fully unsound analyses?

• Efficacy of OC-SVM: Does the one-class classification
algorithm outperform two-class classification algorithms?

• Feature Design: How should we choose a set of features
to effectively predict harmless program components?

• Time Cost: How does our technique affect cost of
analysis?

A. Setting

1) Implementation: We have implemented our method on
top of a static analyzer for full C. It is a generic analyzer that
tracks all of numeric, pointer, array, and string values with
flow-, field-, and context-sensitivity. The baseline analyzer
is unsound by design to achieve a precise bug-finder; it
ignores complex operations (e.g., bitwise operations and weak
updates) and filters out reported alarms that are unlikely to be
true.

We modified the baseline analyzer and created two instance
analyzers, an interval analysis and a taint analysis, as described
in Section IV. For each analysis, we built a fully sound version
(BASELINE), a uniformly unsound version (UNIFORM), and a
selectively unsound version (SELECTIVE) with respect to the
soundness parameter in Section IV. In the interval analysis
for buffer-overflow errors, UNIFORM is set to be uniformly
unsound for every loop and library call, and SELECTIVE is
selectively unsound for them. In the taint analysis for format
string vulnerabilities, UNIFORM is uniformly unsound for
all the library calls (but not for loops), and SELECTIVE is
selectively unsound for them.

To implement the OC-SVM classifier, we used scikit-learn
machine-learning package [11] with the default setting of the
algorithm (specifically, we used the radial basis function (RBF)
kernel with γ = 0.1 and ν = 0.1).

2) Benchmark: Our experiments were performed on 36
programs whose buggy program points are known. They are
the programs from open source software packages or previous
work on static analysis evaluations [12], [13]. Table I and II
contain the list of the benchmark programs for the interval
and the taint analysis, respectively. SM-X, BIND-X, and
FTP-X are model programs from [12], which contain buffer
overflow vulnerabilities. Most of the bugs in the benchmarks
are reported as critical vulnerabilities by authorities such as
CVE [14]. In total, our benchmark programs have 138 real
buffer-overflow bugs and 106 real format string bugs.



Target Feature Property Type Description

Loop

Null Syntactic Binary Whether the loop condition contains nulls or not
Const Syntactic Binary Whether the loop condition contains constants or not
Array Syntactic Binary Whether the loop condition contains array accesses or not

Conjunction Syntactic Binary Whether the loop condition contains && or not
IdxSingle Syntactic Binary Whether the loop condition contains an index for a single array in the loop

IdxMulti Syntactic Binary Whether the loop condition contains an index for multiple arrays in the loop
IdxOutside Syntactic Binary Whether the loop condition contains an index for an array outside of the loop

InitIdx Syntactic Binary Whether an index is initialized before the loop
Exit Syntactic Numeric The (normalized) number of exits in the loop
Size Syntactic Numeric The (normalized) size of the loop

ArrayAccess Syntactic Numeric The (normalized) number of array accesses in the loop
ArithInc Syntactic Numeric The (normalized) number of arithmetic increments in the loop

PointerInc Syntactic Numeric The (normalized) number of pointer increments in the loop
Prune Semantic Binary Whether the loop condition prunes the abstract state or not
Input Semantic Binary Whether the loop condition is determined by external inputs
GVar Semantic Binary Whether global variables are accessed in the loop condition

FinInterval Semantic Binary Whether a variable has a finite interval value in the loop condition
FinArray Semantic Binary Whether a variable has a finite size of array in the loop condition
FinString Semantic Binary Whether a variable has a finite string in the loop condition

LCSize Semantic Binary Whether a variable has an array of which the size is a left-closed interval
LCOffset Semantic Binary Whether a variable has an array of which the offset is a left-closed interval
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the loop

Library

Const Syntactic Binary Whether the parameters contain constants or not
Void Syntactic Binary Whether the return type is void or not

Int Syntactic Binary Whether the return type is int or not
CString Syntactic Binary Whether the function is declared in string.h or not

InsideLoop Syntactic Binary Whether the function is called in a loop or not
#Args Syntactic Numeric The (normalized) number of arguments

DefParam Semantic Binary Whether a parameter are defined in a loop or not
UseRet Semantic Binary Whether the return value is used in a loop or not

UptParam Semantic Binary Whether a parameter is update via the library call
Escape Semantic Binary Whether the return value escapes the caller

GVar Semantic Binary Whether a parameters points to a global variable
Input Semantic Binary Whether a parameters are determined by external inputs

FinInterval Semantic Binary Whether a parameter have a finite interval value
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the arguments

#ArgString Semantic Numeric The (normalized) number of string arguments

Fig. 5. Features for typical loops and library calls in C programs

B. Effectiveness of Our Approach

We evaluate the effectiveness of our approach by compar-
ing precision of SELECTIVE to that of the other analyzers,
BASELINE and UNIFORM. We use cross-validation, a model
validation technique for assessing how the results of a statis-
tical analysis will generalize to new data. We show the results
from three types of cross-validation: leave-one-out, 2-fold, and
3-fold cross-validation.

1) Leave-one-out Cross-validation: This is one of the most
common types of cross-validation, which uses one observation
as the validation set and the remaining observations as the
training set. In case of the interval analysis, for example,
among the 23 benchmark programs, one program is used
for validating and measuring the effectiveness of the learned
model, and the other remaining 22 programs are used for
training.

Table I shows the results of the leave-one-out cross-
validation for the interval analysis. We measured the number of
true (T) and false (F) alarms from BASELINE, UNIFORM, and
SELECTIVE. In terms of true alarms, BASELINE detects 118
real bugs (FNR: 14.5%) in the programs. While UNIFORM de-
tects only 33 bugs (FNR: 76.1%), SELECTIVE effectively de-

BASELINE SELECTIVE UNIFORM
Program LOC Bug T F T F T F
SM-1 0.5K 28 28 18 28 15 13 5
SM-2 0.8K 2 2 16 1 4 0 0
SM-3 0.7K 3 3 3 3 3 0 0
SM-4 0.7K 10 10 6 10 6 6 0
SM-5 1.7K 3 3 6 3 6 0 0
SM-6 0.4K 1 0 0 0 0 0 0
SM-7 1.1K 2 2 32 0 2 0 0
BIND-1 1.2K 1 1 35 1 33 0 0
BIND-2 1.7K 1 1 45 0 41 0 0
BIND-3 0.5K 1 1 4 0 1 0 0
BIND-4 1.1K 2 2 0 0 0 0 0
FTP-1 0.8K 4 4 13 4 3 0 0
FTP-2 1.5K 1 1 7 1 6 0 3
FTP-3 1.5K 24 24 25 23 17 7 12
polymorph-0.4.0 0.7K 10 10 6 3 6 0 6
ncompress-4.2.4 1.9K 12 0 10 4 0 0 0
129.compress 2.0K 7 7 34 7 14 4 7
spell-1.0 2.2K 1 0 0 0 0 0 0
man-1.5h1 4.7K 6 5 60 1 28 0 13
256.bzip2 4.7K 3 3 149 3 21 3 21
gzip-1.2.4a 8.2K 13 11 87 8 34 0 24
bc-1.06 17.0K 2 0 57 0 10 0 9
sed-4.0.8 25.9K 1 0 64 0 14 0 4
Total 138 118 677 100 264 33 104

TABLE I
THE NUMBER OF ALARMS IN INTERVAL ANALYSIS



BASELINE SELECTIVE UNIFORM
Program LOC Bug T F T F T F
mp3rename-0.6 0.6K 1 1 0 1 0 1 0
ghostscript-8.71 1.5K 2 2 0 2 0 2 0
uni2ascii-4.14 5.7K 7 7 0 7 0 7 0
pal-0.4.3 7.4K 3 3 0 0 0 0 0
shntool-3.0.1 16.3K 1 1 10 1 1 1 0
sdop-0.61 23.9K 65 65 78 65 0 0 0
latex2rtf-2.3.8 28.7K 2 2 9 2 8 0 1
rrdtool-1.4.8 34.8K 1 1 12 1 1 1 0
daemon-0.6.4 58.4K 1 1 7 1 1 1 0
rplay-3.3.2 61.0K 3 3 7 2 4 1 2
urjtag-0.10 64.2K 12 12 78 6 0 0 0
a2ps-4.14 64.6K 6 6 26 3 12 1 0
dico-2.0 84.3K 2 2 46 1 1 1 2
Total 106 106 273 92 28 16 5

TABLE II
THE NUMBER OF ALARMS IN TAINT ANALYSIS
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Fig. 6. Performance with different training and test data

tects 100 bugs (FNR: 27.5%). Meanwhile, BASELINE reports
677 false alarms (FPR: 85.2%).1 UNIFORM, on the other
hand, reports 104 false alarms (FPR : 75.9%), which indicates
573 alarms can be potentially removable by being unsound
for loops and library calls. Among the 573 alarms, SELEC-
TIVE can remove 72.1% (413/573) of them (FPR:72.5%).

Table II shows the results for the taint analysis. In total,
BASELINE detects all of the 106 real format-string bugs in
the programs, while UNIFORM detects only 16 bugs (FNR:
84.9%). On the contrary, SELECTIVE effectively detects 92
bugs (FNR: 13.2%). Meanwhile, BASELINE, UNIFORM, and
SELECTIVE report 273, 5, and 28 false alarms, respectively.
That is, among 273 false alarms, which can be potentially
removable by being unsound for library calls, SELECTIVE can
remove 89.7% (245/273) of them.

The result implies that selectively applying unsoundness is
also crucial for reducing FPR of the analysis. For the interval
analysis, the FPR is 85.2% for BASELINE and 75.9% for
UNIFORM, whereas 72.5% for SELECTIVE on average. For
the taint analysis, the FPR is 72.0% for BASELINE, 23.3% for
SELECTIVE, 23.8% for UNIFORM on average.

2) Two- and Three-fold Cross-validation: Next, we evaluate
the performance of the interval analysis with 2-fold and 3-fold
cross-validation. The benchmark is randomly divided into 2 or
3 subsets that are equal size. Then, one of them is used as the
validation set and the others as the training sets. We repeated
this process ten times and reported the number of alarms for

1In practice, eliminating these false alarms is extremely challenging in
domain-unaware static analysis, because they arise from a variety of reasons:
e.g., large recursive call cycles, unknown library calls, complex loops, heap
abstractions, etc.

each trial.
Figure 6 shows the number of true and false alarms for

each trial of 2-fold and 3-fold cross-validation. The numbers
are normalized with respect to the number of alarms produced
by BASELINE. In total, BASELINE reported 486 true alarms
and 3,696 false alarms. SELECTIVE detected 427 (87.9%) true
alarms, whereas UNIFORM detected only 129 (26.5%) true
alarms in the 2-fold cross-validation. Compared to BASE-
LINE, SELECTIVE reduced 1,812 (49.0%) false alarms, while
UNIFORM reduced 3,216 (87.0%). During the 3-fold cross-
validation, BASELINE reported 399 true alarms and 2,119 false
alarms. In terms of true alarms, SELECTIVE detected 352
(88.2%) true alarms, whereas UNIFORM managed to detect
only 119 (29.8%) true alarms. As for false alarms, among
1,769 (83.5%) false alarms that are reduced by UNIFORM,
SELECTIVE was able to reduce 1,150 (54.3%).

C. Efficacy of OC-SVM

In this section, we justify the use of OC-SVM for learning
common properties of harmless program components. We
compare the performance of SELECTIVE whose classifier is
learned by OC-SVM to that of three other analyzers with a
binary classifier and two random classifiers, respectively.

Let BINARY be the analyzer with a binary classifier. We
use C-SVM for the binary classifier, which is a support vector
machine-based binary classification algorithm [15]. It learns
two classes of training data (i.e. a set of harmless components
and the complement set), and then decides whether a new input
is harmless or not. In these experiments, we used the interval
analyzer with leave-one-out cross validation.

RANDA and RANDB are the analyzers with random clas-
sifiers that are built and used for the comparison. RANDA
randomly classifies components as harmless with the proba-
bility of 0.5. Stochastically, a half of loops and library calls are
selected as harmless. RANDB randomly classifies components
as harmless with the same probability of the OC-SVM. We ran
each analyzer 10 times and measured the number of alarms
for each trial.

Figure 7 compares the number of true and false alarms
produced by SELECTIVE, BINARY, RANDA, and RANDB for
10 trials. BINARY reports more true alarms than SELECTIVE;
BINARY reports 103 true alarms, whereas SELECTIVE re-
ports 96 true alarms. However, using BINARY considerably
sacrifices the precision; it reports 573 false alarms, whereas
SELECTIVE reports only 266. The results from RANDA and
RANDB are also inferior to SELECTIVE; RANDA reports
387.5 false alarms and 70.5 true alarms, and RANDB reports
267.2 false alarms with 79.4 true alarms on average.

The result shows SELECTIVE clearly outperforms the other
classifiers. SELECTIVE is more precise than BINARY, indicat-
ing that the anomaly detection by OC-SVM is more suitable
to find harmless components than the binary classification.
Also, SELECTIVE always detects more bugs and reports less
false alarms than other analyzers with the random classifiers.
Despite the fact that RANDB detects more bugs than RANDA,
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Fig. 7. Comparison between SELECTIVE, BINARY, RANDA, and RANDB

it is still insignificant since both of them are much more
imprecise than our system.

D. Feature Design

1) Wining Features: The learned classifier tells us which
feature is most useful for learning harmless unsoundness. The
features we used capture general characteristics of harmless
program components. In order to determine the ordering of
features, we used information gain which is the expected
reduction in entropy when a feature is used to classify training
examples (in classification, low entropy, i.e., impure data, is
preferred) [16].

The results show that harmless loops tend to have point-
ers iteratively accessing (PtrInc) arrays (Array) or strings
(FinString) with loop conditions that compare array contents
with null (Null) or constant values (Const). These features
collectively describe loops like the first example loop in
Section II. The result also shows that most harmless library
calls for the interval analysis return integer values (Int) and
manipulate strings (CString). This is because our interval
analyzer aggressively abstracts string values, so unsound treat-
ment of string libraries (e.g., strlen, strcat) is likely
to improve the analysis precision. For the taint analysis, the
results show that library calls with less arguments (#Args) and
abstract locations (#AbsLoc) (e.g., random, strlen) are
likely to be irrelevant to propagation of user inputs compared
to ones with more arguments (e.g., fread, recv).

2) Different Feature Sets: We measured the performance of
the classifier with less features in three ways: 1) with syntactic
features only; 2) with semantic features only; and 3) with
randomly-chosen half of the features. For the interval analyzer,
the classifier learned with only syntactic features reported 1%
more bugs but 26% more false alarms than the classifier with
all features, the classifier with only semantic features reported
1% more false alarms and missed 41% more bugs, and the
classifier with half of the features reported 17% more false
alarms and missed 1% more bugs on average.

E. Time Cost

We measured how long it takes to run each analysis on our
benchmark programs and compare it with the time that our

selective unsound analysis takes. For the benchmark programs
in Table I, the sound interval analysis BASELINE took 42.1
seconds for analyzing all the listed programs, UNIFORM only
took 27.7 seconds, reducing the total time by 14.4 seconds
(34.2%). SELECTIVE took 33.8 seconds, reducing the total
time by 8.3 seconds (19.7%). RANDA and RANDB took
longer than SELECTIVE: 35.4 and 37.5 seconds, respectively.
In summary, SELECTIVE takes less time than BASELINE,
RANDA, and RANDB.

F. Discussion
As addressed in the experiments, our technique may miss

some true alarms which can be detected by the fully sound
analysis or fail to avoid some false alarms which are not
reported by the fully unsound analysis. In this section, we
discuss why these limitations occur and how to overcome.

1) Remaining False Alarms: Compared to the fully un-
sound analysis, our technique reports more false alarms. It
is mainly because reporting the false alarms is inevitable in
order to detect true alarms. Consider the following example
program excerpted from SM-5:

1 size = 10 + positive_input();
2 arr = malloc(size);
3

4 for(i = 0; i < size; i++){
5 arr[i] = ... // buffer access 1
6 arr[i+1] = ... // buffer access 2
7 }

By soundly analyzing the loop, the analysis reports an alarm
for the buffer-overflow bug at line 6 at the cost of a false alarm
at line 5. The unsound analysis removes the false alarm, but it
also fails to report the true alarm. Our selective method may
decide to analyze such a loop soundly in order to detect the
bug, even though reporting the false alarm is inevitable.

We found that these inevitable false alarms are the primary
reason for SELECTIVE to report more false alarms compared to
UNIFORM. For example, when analyzing SM-5 in our bench-
mark programs, five among six false alarms are inevitable.
In order to remove such false alarms in a harmless way, we
need a more fine-grained parameter space for soundness so
that we can apply different degrees of soundness to different
statements in a single loop, which would be an interesting
future direction to investigate.

2) Missing True Alarms: Compared to the fully sound
analysis, our technique reports less true alarms. It is mainly
because the bugs are involved in typically-harmless loops.
Consider the following code snippet from man-1.5h1:

1 char arr[10] = ‘‘string’’;
2 size = positive_input();
3 for (i = 0; i < size; i ++)
4 skip;
5 arr[i] = 0; // buffer access 1
6

7 for(i = 0; !arr[i]; i++)// buffer access 2
8 skip;

The two buffer access expressions both contain buffer overflow
bugs. However, our technique detects the first bug, but not the



second. It is because it classifies the second loop as harmless–
it learns that loops that iterate constant strings are likely to be
harmless.

However, we found that most of the missing bugs share
the root causes with other bugs detected by our technique.
For instance, in the above example, fixing the first bug at line
5 automatically fixes the second one. In our case, therefore,
missing true alarms is in fact not a huge drawback in terms
of practicability.

VI. RELATED WORK

A. Unsoundness in Static Analysis

Existing unsound static analyses are all uniformly unsound
(e.g., [2], [3], [4], [5], [6]). In addition to their unsound
handling of every loop and library call in a given program, they
consider only a specific branch of all conditional statements in
a program [2], deactivate all recursive calls [5], [3], or ignore
all the possible inter-procedural aliasing [2], [5], [3]. As shown
in this paper, these uniform approaches have a considerable
drawback; it significantly impairs the capability of detecting
real bugs. This paper is the first to tackle this problem and
presents a novel approach of selectively employing unsound-
ness only when it is likely to be harmless.

Mangal et al. proposed an interactive system to control
the unsoundness of static analysis online based on the user
feedback [17]. They define a probabilistic Datalog analysis
with “hard” and (unsound) “soft” rules, where the goal of the
analysis is to find a solution that satisfies all of the hard rules
while maximizing the weight of the satisfied soft rules. The
feedback from analysis users is encoded as soft rules, and
based on the feedback, the analysis is re-run and produces a
report that optimizes the updated constraints. In our setting
(non-Datalog), however, it is not straightforward to tune the
unsoundness from user feedbacks. Instead, our approach auto-
matically learns harmless unsoundness and selectively applies
unsound strategies depending on the different circumstances.

Our goal is different from the existing work on unsoundness
by Christakis et al. [18], which empirically evaluated the
impact of unsoundness in a static analyzer using runtime
checking. They instrumented programs with the unsound as-
sumptions of the analyzer and check whether the assumptions
are violated at runtime. On the contrary, we introduce a new
notion of selective unsoundness and evaluate its impact in
terms of the number of true alarms and false alarms reported.

B. Parametric Static Analysis

Our work uses a parametric static analysis in a novel way,
where the parameters specify the degree of soundness, not
the precision setting of the analysis. The existing parametric
static analyses have been focused on balancing the precision
and the cost of static analysis [19], [20], [21], [10]. They
infer a cost-effective abstraction for a newly given program
by iterative refinements [19], [20], impact pre-analyses [21], or
learning from a codebase [10]. On the other hand, our goal is to
find a soundness parameter striking the right balance between
existing fully sound and unsound approaches. Furthermore,

the existing techniques for deriving static analysis parameters
(e.g., [19], [20], [21]) cannot be used for our purpose since it is
simply impossible to automatically judge truth and falsehood
of alarms. We address this problem by designing a supervised
learning method that learns a strategy from a given codebase
with known bugs. Because we have labelled data, using the
learning algorithm via black-box optimization [10] is inap-
propriate. Instead, we use an off-the-shelf learning method,
which uses the gradient-based optimization algorithm and
works much faster than the black-box optimization approach.

C. Statistical Alarm Filtering
Our approach is orthogonal to statistical post-processing

of alarms [22], [23], [24]. The post-processing (e.g. rank-
ing) approach aims to remove false positives (reported false
alarms). Instead, our approach aims to remove false negatives
(unreported true alarms). From the undiscerning, uniformly
unsound analysis that will have too many unreported true
alarms, we tune it to be selectively unsound.

These post-processing systems are also complementary to
our approach. Because in practice any realistic bug-finding
static analyzer cannot but be unsound (for the analysis pre-
cision and scalability), our technique provides a guide on
how to design an unsound one. The existing post-processing
techniques (e.g. ranking) can be anyway applied to the results
from such selectively unsound static analyzers.

VII. CONCLUSION

In this paper, we presented a novel approach for selectively
employing unsoundness in static analysis. Unlike existing uni-
formly unsound analyses, our technique applies unsoundness
only when it is likely to be harmless (i.e., in a way to reduce
the number of false alarms while retaining true alarms). We
proposed a learning-based method for automatically tuning
the soundness of static analysis in such a harmless way. The
experimental results showed that the technique is effectively
applicable to two bug-finding static analyzers and reduces their
false negative rates while retaining their original precision.
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