Resource-aware Program Analysis via Online Abstraction Coarsening

Kihong Heo

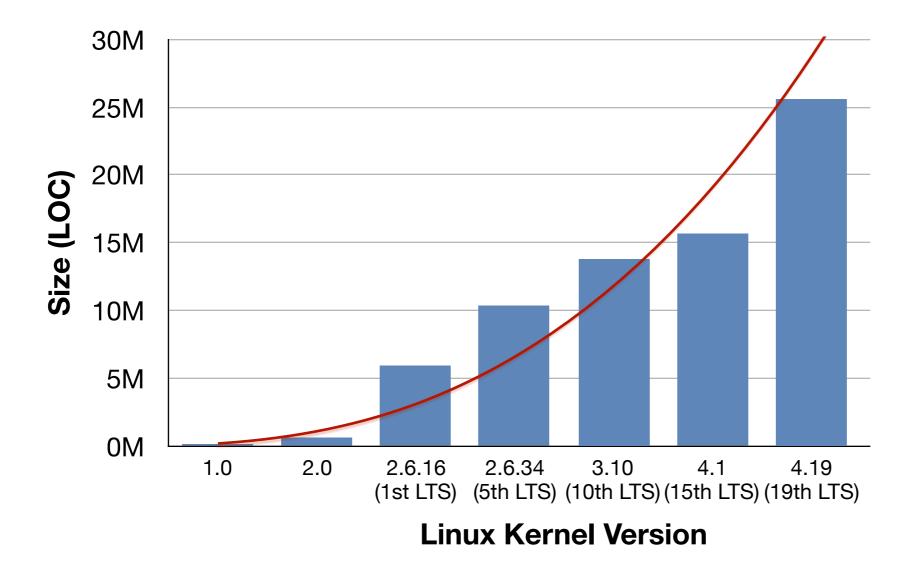
Hakjoo Oh

Hongseok Yang

ICSE 2019

Motivation

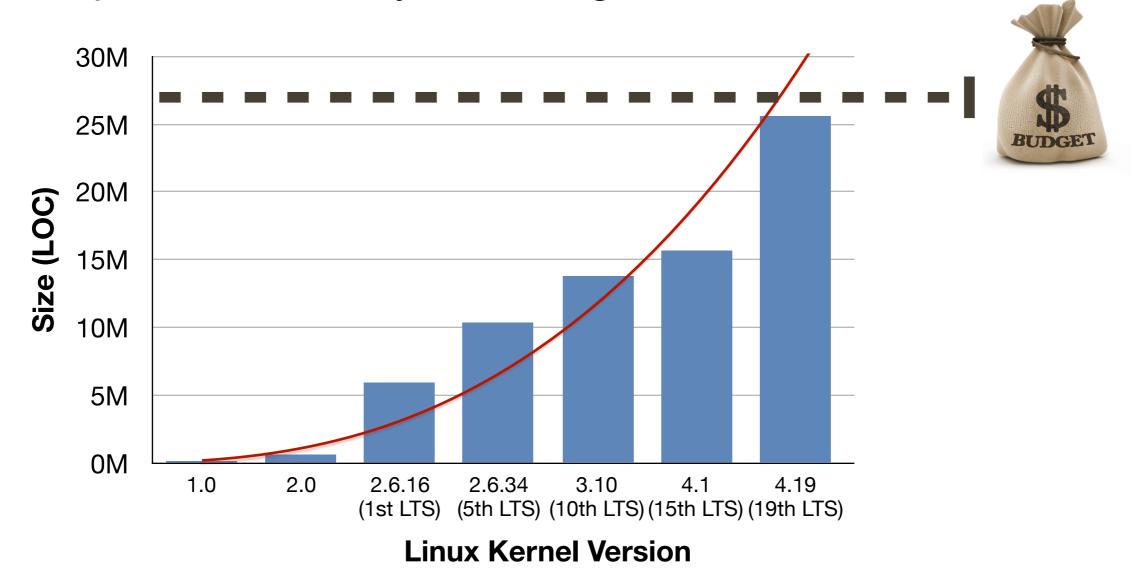
• Deep semantic analysis for large software



^{*}https://www.linuxcounter.net

Motivation

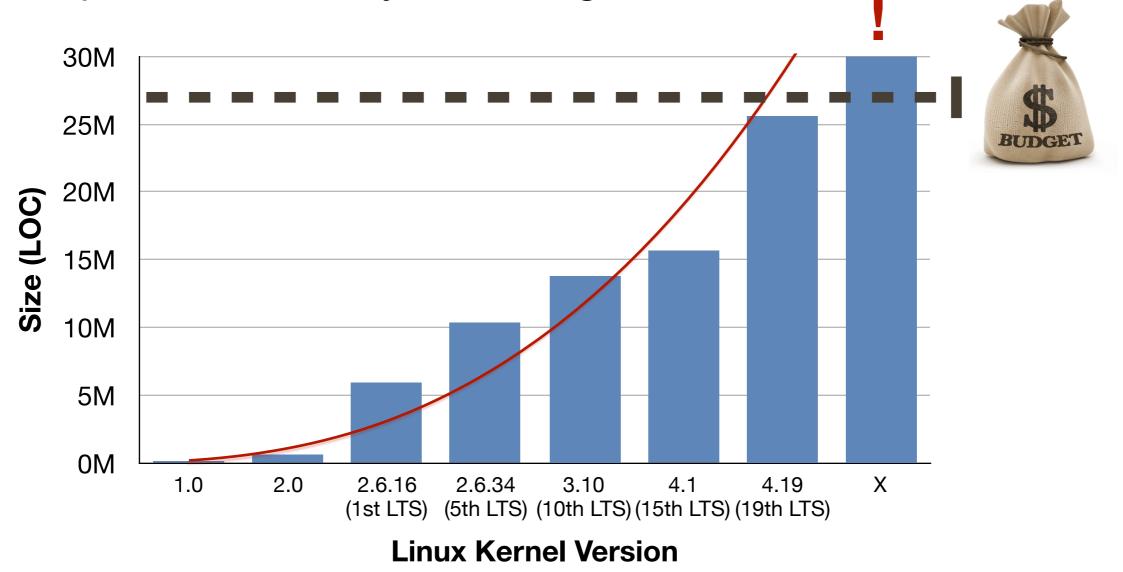
Deep semantic analysis for large software



^{*}https://www.linuxcounter.net

Motivation

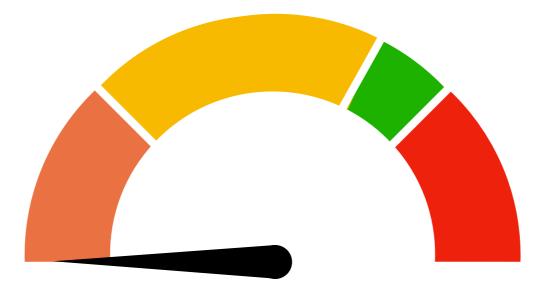
Deep semantic analysis for large software



*https://www.linuxcounter.net

- Achieving maximum precision within a given resource budget
 - e.g., within 128GB of memory

- Achieving maximum precision within a given resource budget
 - e.g., within 128GB of memory



X-sensitivity (knob)

- Achieving maximum precision within a given resource budget
 - e.g., within 128GB of memory



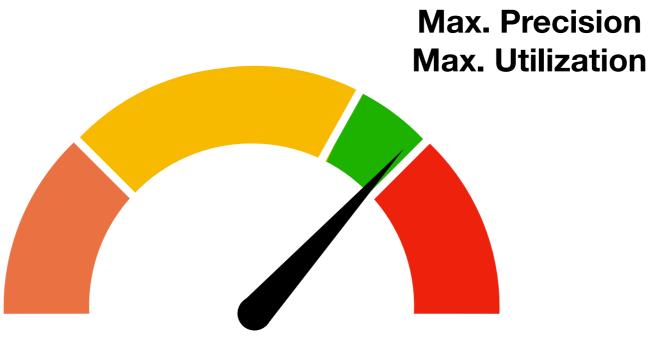
X-sensitivity (knob)

4

- Achieving maximum precision within a given resource budget
 - e.g., within 128GB of memory

X-sensitivity (knob)

- Achieving maximum precision within a given resource budget
 - e.g., within 128GB of memory



X-sensitivity (knob)

- Hard to predict the behavior of analyzer in advance
 - e.g., partially flow-sensitive interval analysis

- Hard to predict the behavior of analyzer in advance
 - e.g., partially flow-sensitive interval analysis

Sensitivity: 0% emacs-26.0.91 (503KLOC)

> Memory: 18GB

- Hard to predict the behavior of analyzer in advance
 - e.g., partially flow-sensitive interval analysis

Sensitivity: 0% emacs-26.0.91 (503KLOC)

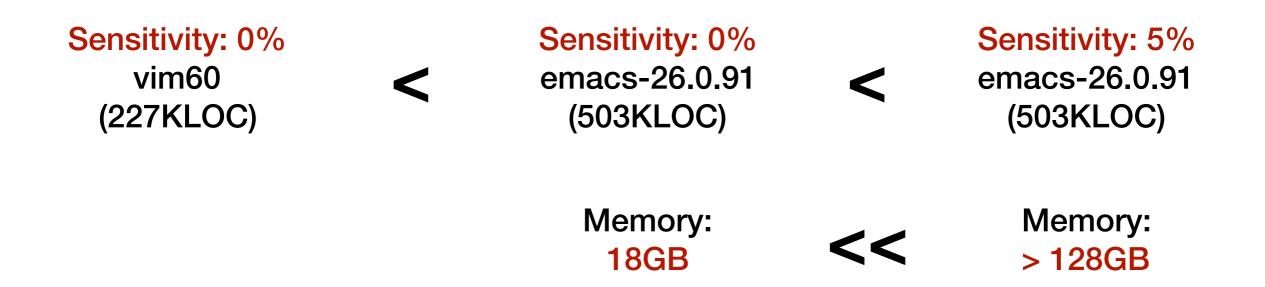
<

Sensitivity: 5% emacs-26.0.91 (503KLOC)

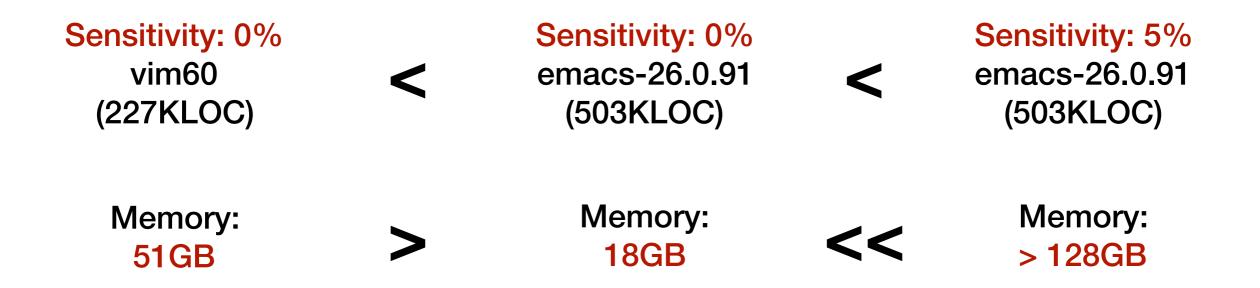
Memory: 18GB

- Hard to predict the behavior of analyzer in advance
 - e.g., partially flow-sensitive interval analysis

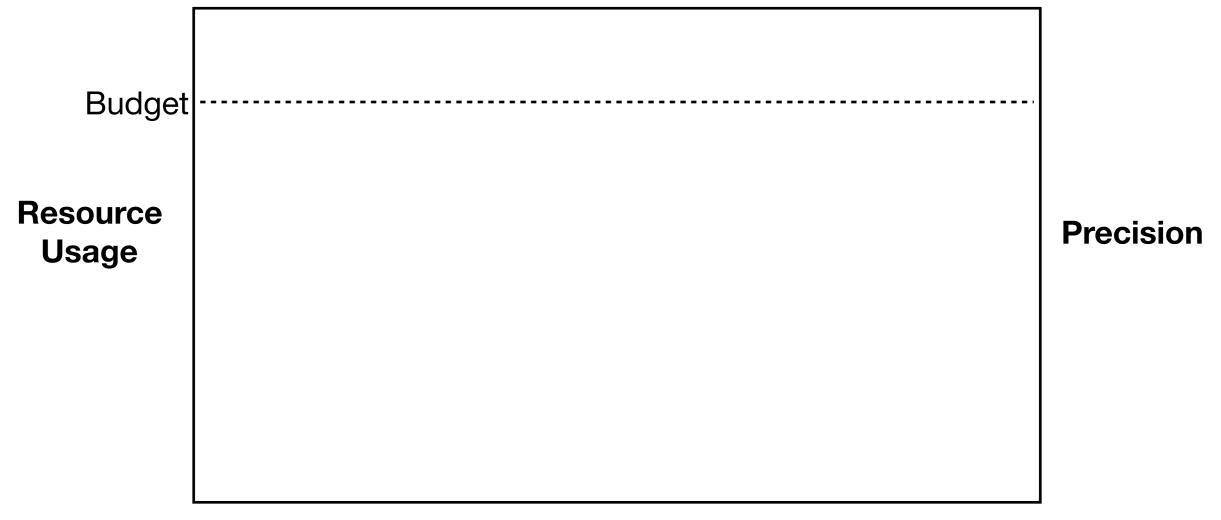
- Hard to predict the behavior of analyzer in advance
 - e.g., partially flow-sensitive interval analysis



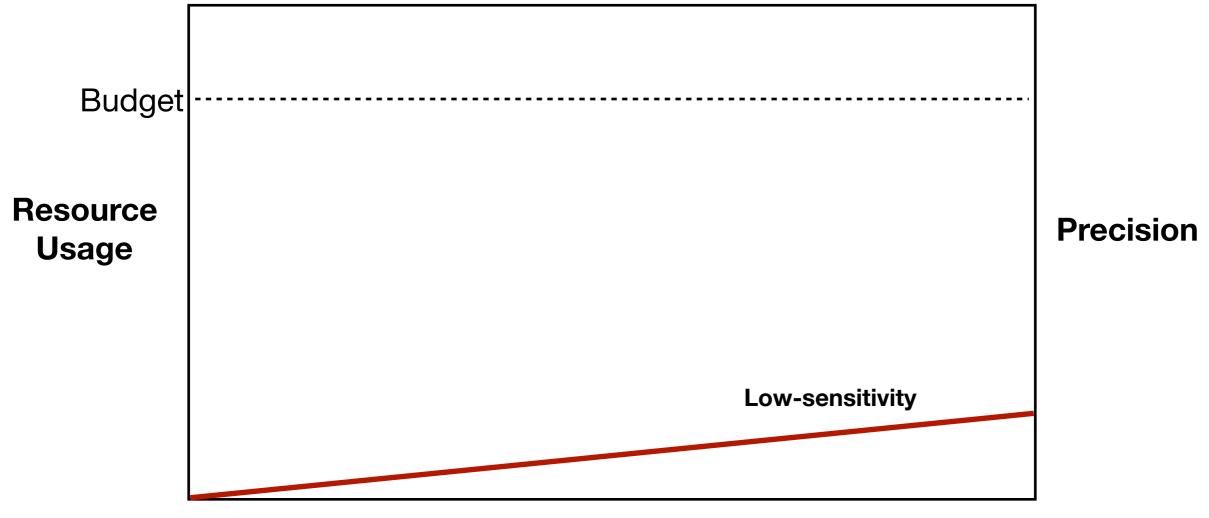
- Hard to predict the behavior of analyzer in advance
 - e.g., partially flow-sensitive interval analysis



• Online abstraction coarsening by a learned controller

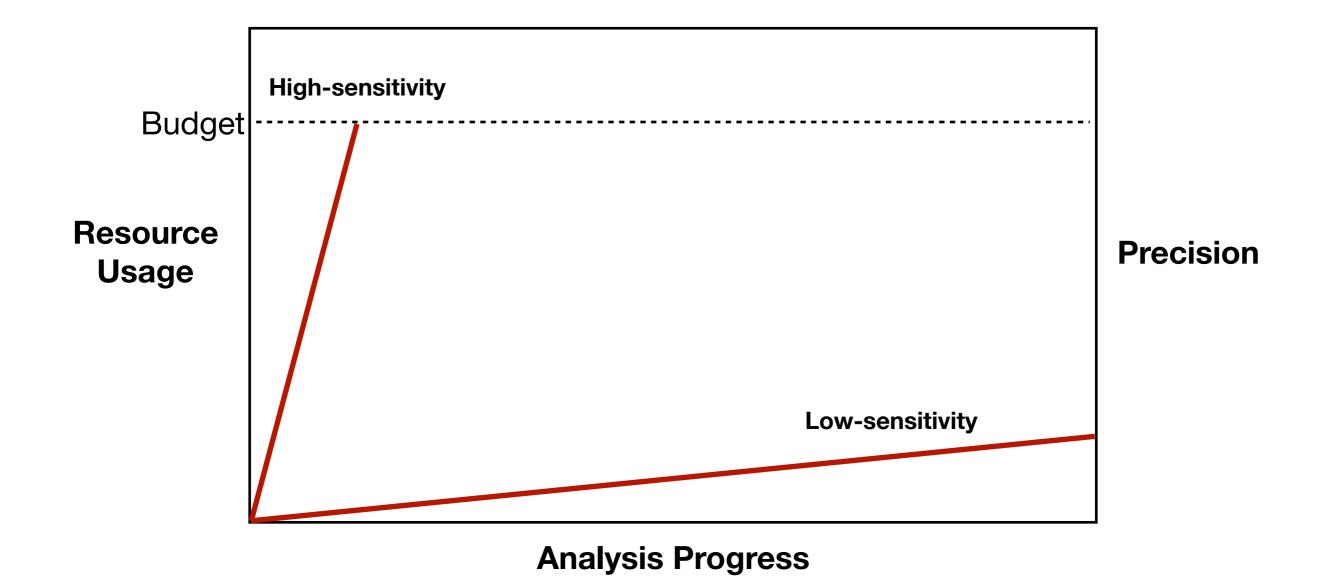


• Online abstraction coarsening by a learned controller

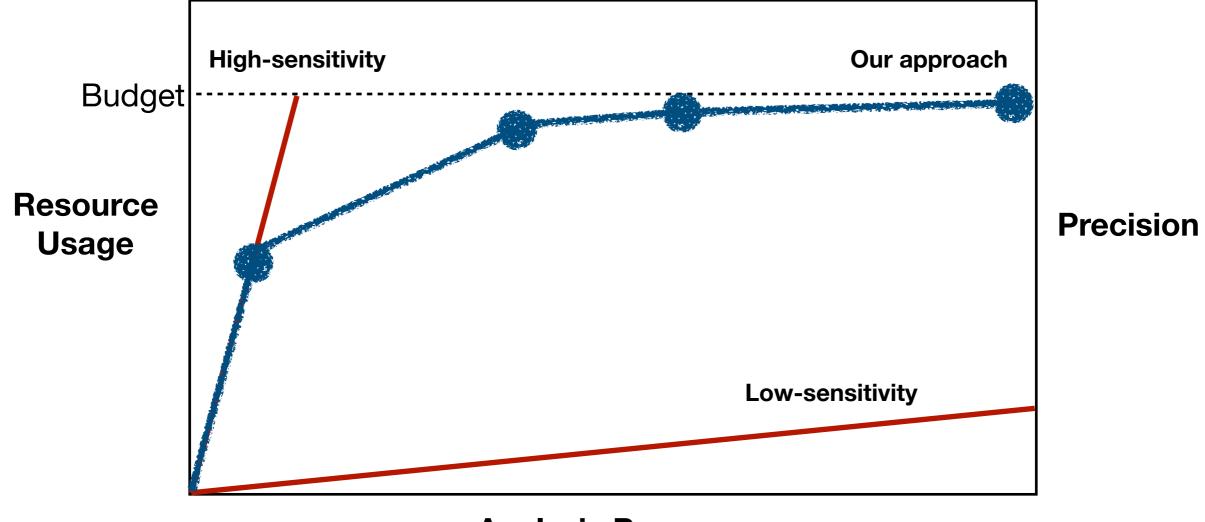


Analysis Progress

• Online abstraction coarsening by a learned controller

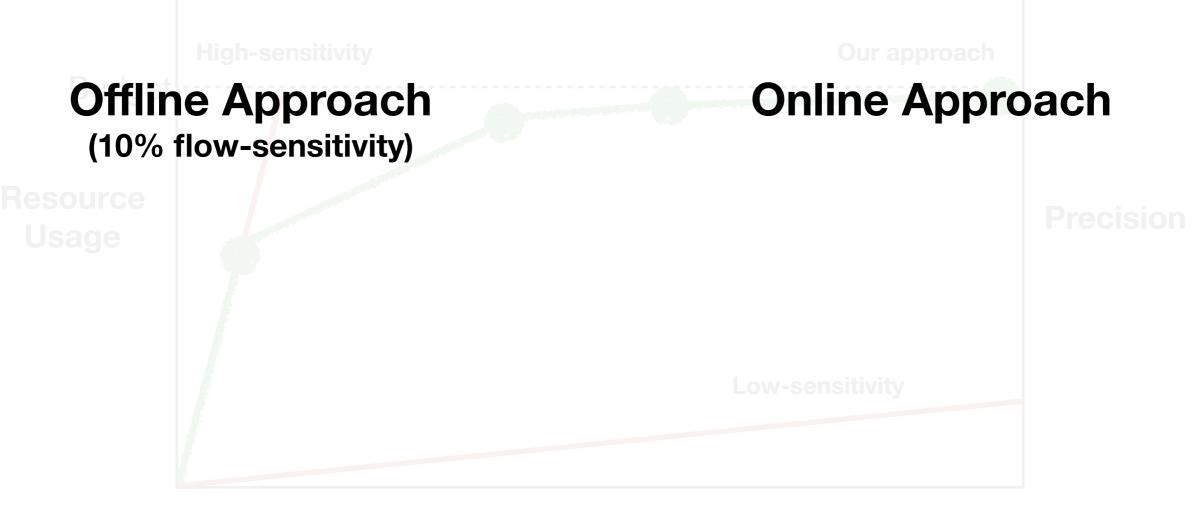


Online abstraction coarsening by a learned controller

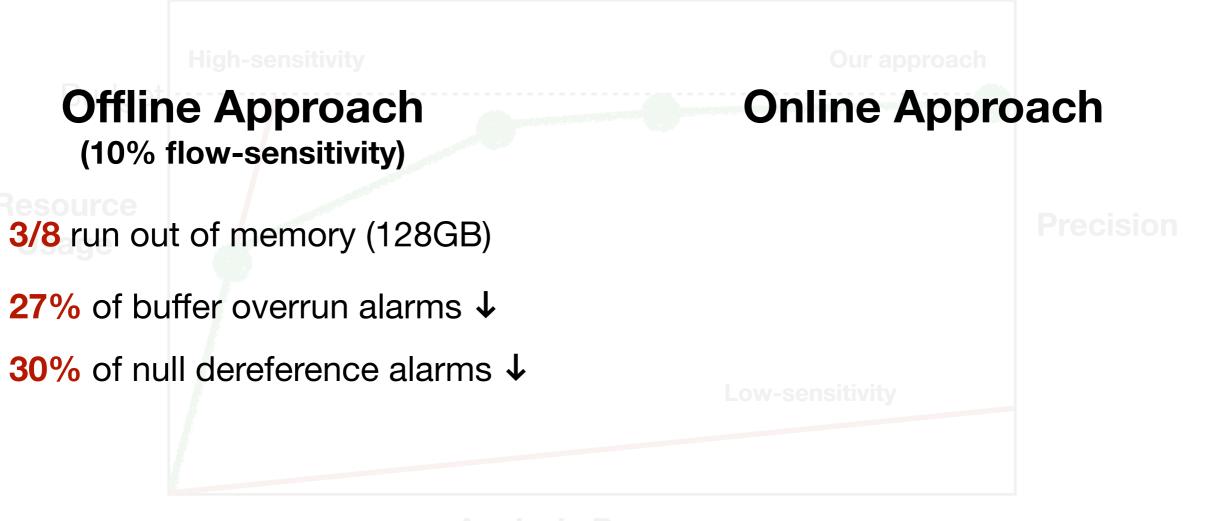


Analysis Progress

Online abstraction coarsening by a learned controller



Online abstraction coarsening by a learned controller



Online abstraction coarsening by a learned controller

High-sensitivity

Offline Approach (10% flow-sensitivity)

Resource

- 3/8 run out of memory (128GB)
- 27% of buffer overrun alarms \downarrow
- 30% of null dereference alarms \downarrow

Our approac

Online Approach

- **0/8** run out of memory (64 / 128GB)
- 28—32% of buffer overrun alarms ↓
- 33-41% of null dereference alarms ↓

Outline

- Motivation
- Learning Framework
- Experimental Results
- Conclusion

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

 Line
 Flow-Sensitive Abstract State

 1
 $\{x = [0,0], y = [0,0], z = [1,1], v = \top, w = \top\}$

3 Intervals

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

Line	Flow-Sensitive Abstract State
1	$\{x = [0,0], y = [0,0], z = [1,1], v = \top, w = \top\}$
2	$\{x = [1,1], y = [0,0], z = [1,1], v = \top, w = \top\}$

6 Intervals

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

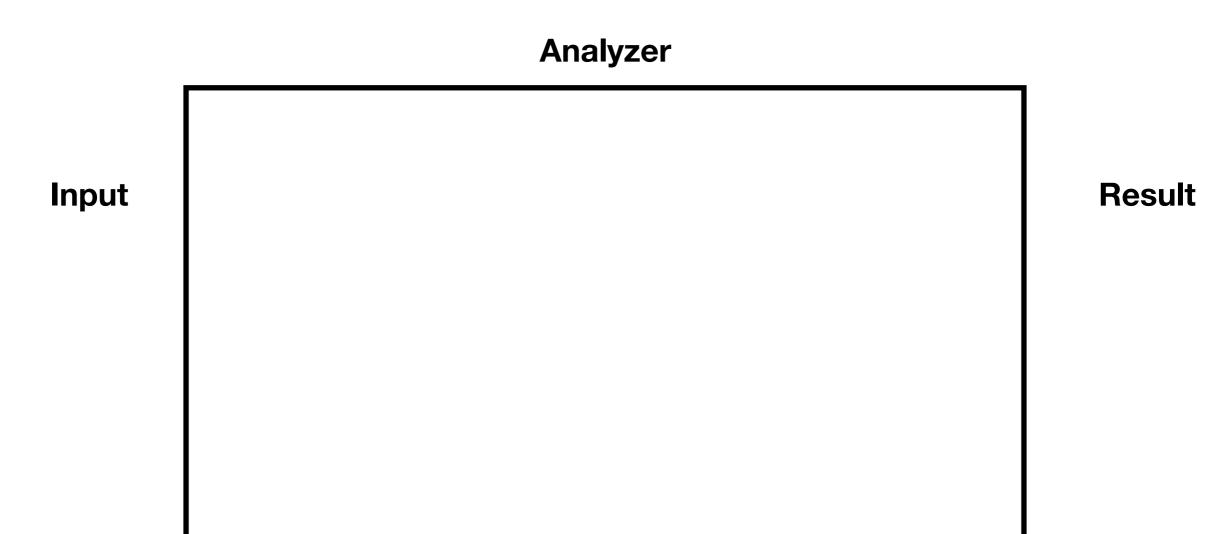
Line	Flow-Sensitive Abstract State
1	{x = [0,0], y = [0,0], z = [1,1], v = \top , w = \top }
2	{x = [1,1], y = [0,0], z = [1,1], v = \top , w = \top }
3	{x = [1,1], y = [0,0], z = [2,2], v = \top , w = \top }
4	$\{x = [1,1], y = [1,1], z = [2,2], v = \top, w = \top\}$

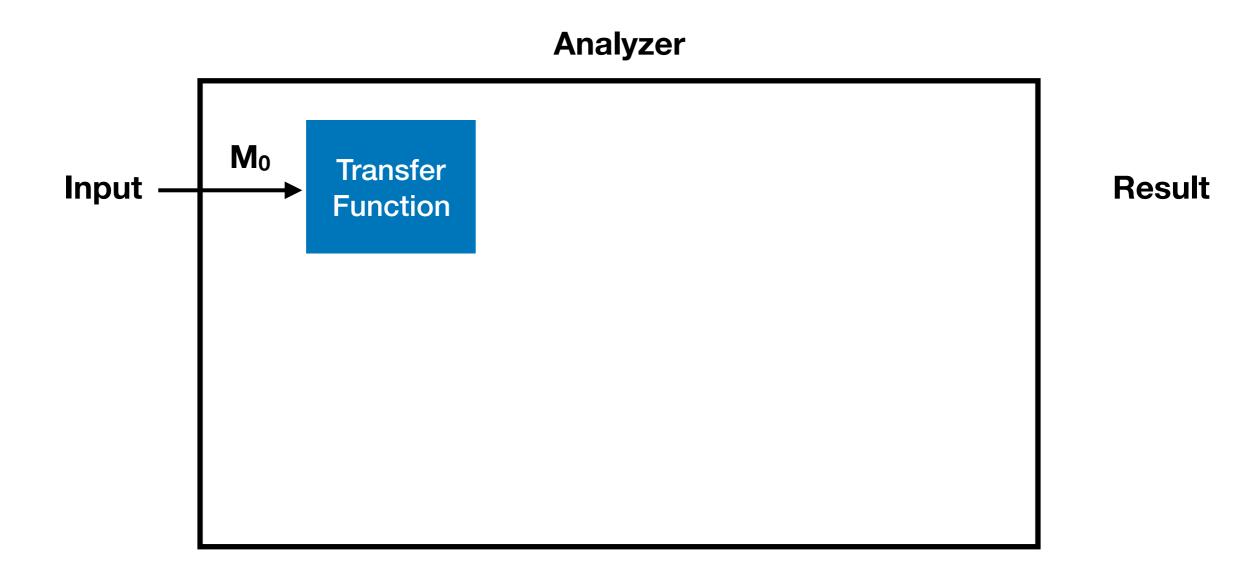
12 Intervals

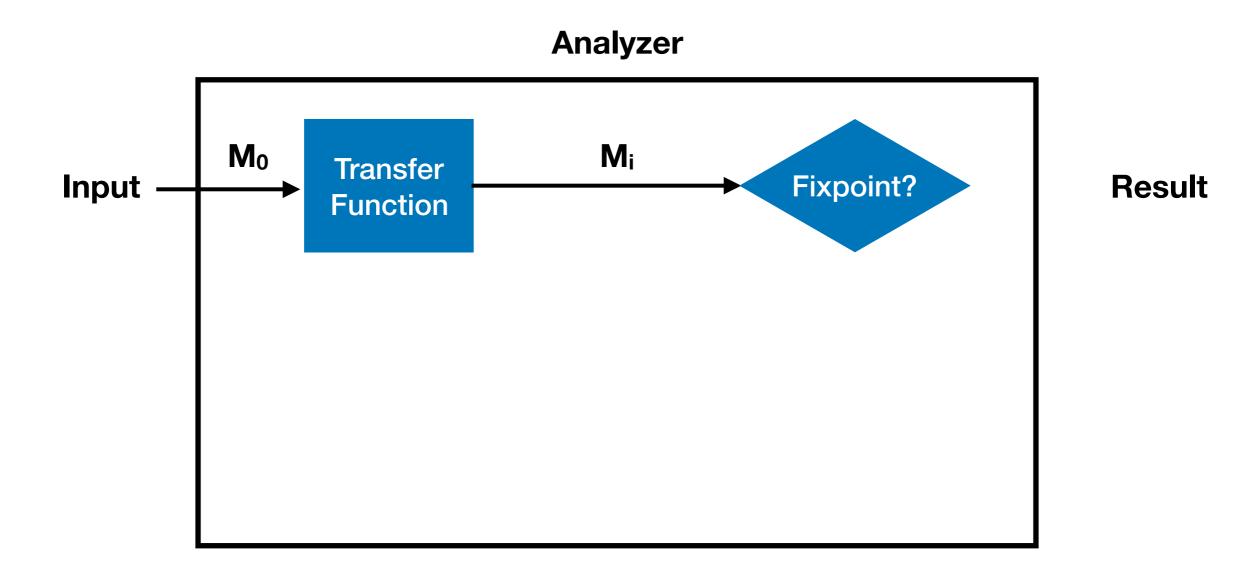
• Partially flow-sensitive interval analysis (budget: 10 intervals)

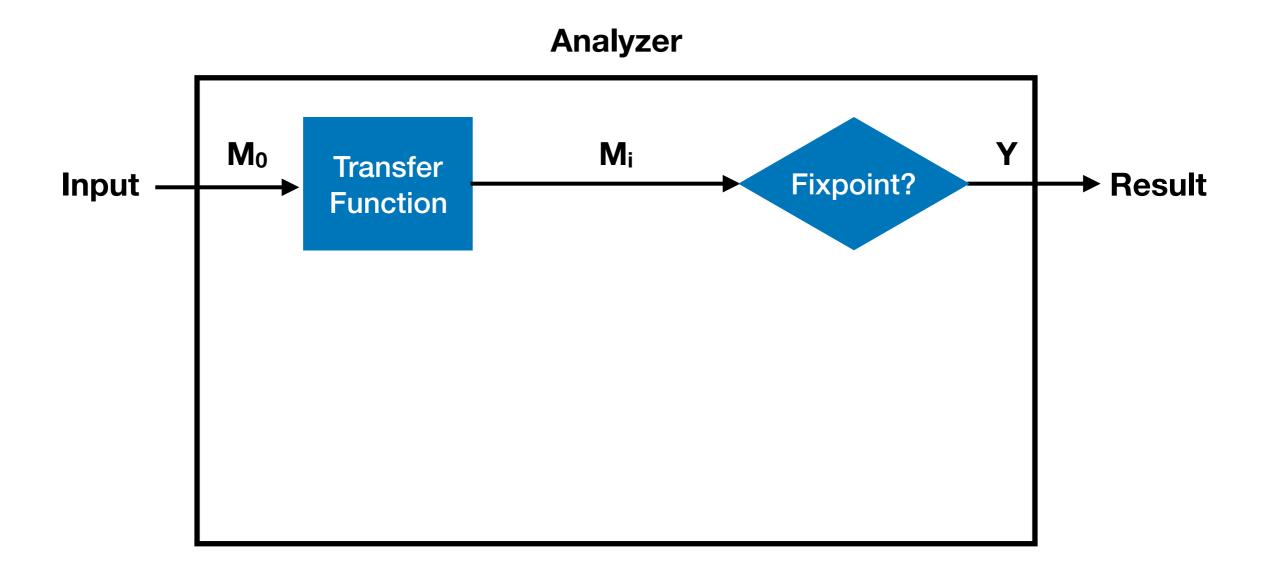
1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

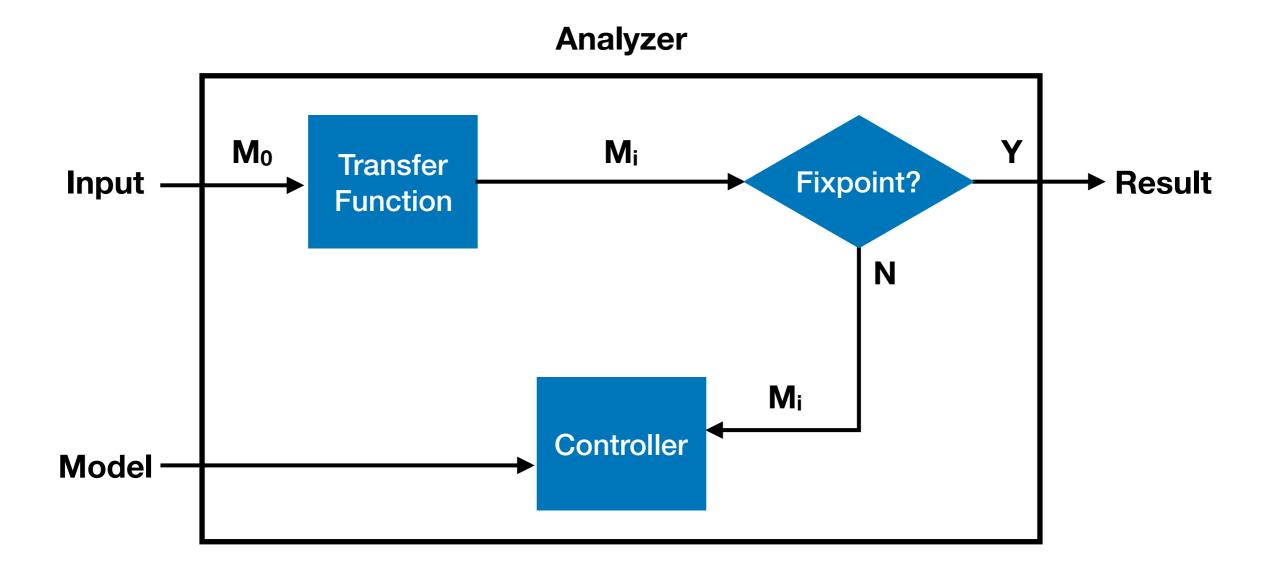
LineFlow-Insensitive Abstract State* $\{x = [0, +\infty], y = [0, +\infty], z = [1, +\infty], v = \top, w = \top\}$ 3 Intervals

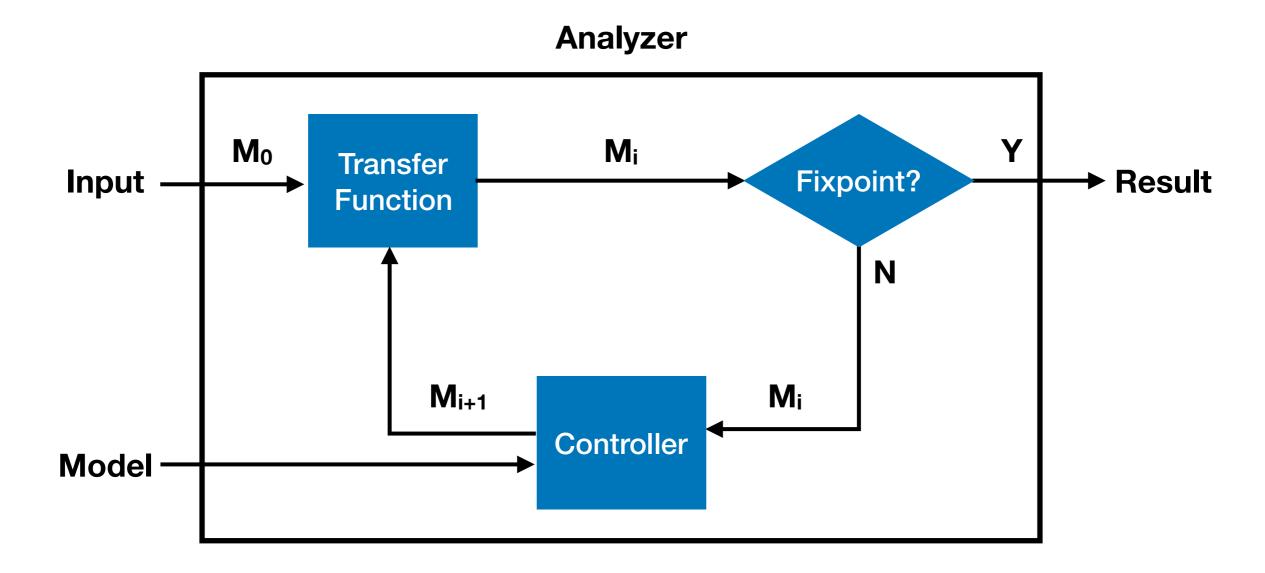












- Model *M* : Variable \rightarrow [0, 1]
- Importance of each variable in terms of flow-sensitivity
- Pre-trained by an off-the-shelf method*

- Model *M* : Variable \rightarrow [0, 1]
- Importance of each variable in terms of flow-sensitivity
- Pre-trained by an off-the-shelf method*

```
1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)
```

- Model *M* : Variable \rightarrow [0, 1]
- Importance of each variable in terms of flow-sensitivity
- Pre-trained by an off-the-shelf method*

```
1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)
```

> M(w)

- Model *M* : Variable \rightarrow [0, 1]
- Importance of each variable in terms of flow-sensitivity
- Pre-trained by an off-the-shelf method*

```
1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)
```

M(x) > M(w)

- Model *M* : Variable \rightarrow [0, 1]
- Importance of each variable in terms of flow-sensitivity
- Pre-trained by an off-the-shelf method*

```
1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)
```

M(x) > M(y) > M(z) > M(v) > M(w)

• Controller $\pi : \mathbf{F} \to Pr(\mathbf{A})$ where $\mathbf{A} = \{0, \dots, 100\}$

- Controller $\pi : \mathbf{F} \to \Pr(\mathbf{A})$ where $\mathbf{A} = \{0, \dots, 100\}$
- Input: a feature vector describing current status
 - e.g., memory usage, analysis progress, etc

- Controller $\pi : \mathbf{F} \to \Pr(\mathbf{A})$ where $\mathbf{A} = \{0, \dots, 100\}$
- Input: a feature vector describing current status
 - e.g., memory usage, analysis progress, etc
- Output: probability distribution on % of variables that should be treated flow-insensitively

• Partially flow-sensitive interval analysis (budget: 10 intervals)

```
1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)
```

Model: M(x) > M(y) > M(z) > M(v) > M(w)

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

Model: M(x) > M(y) > M(z) > M(v) > M(w)

Line	Flow-Sensitive Abstract State	
1	$\{x = [0,0], y = [0,0], z = [1,1], v = \top, w = \top\}$	
2	$\{x = [1,1], y = [0,0], z = [1,1], v = \top, w = \top\}$	

6 Intervals

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

Model: $M(x) > M(y) > M(z) > M(v) \rightarrow M(w)$

Line	Flow-Sensitive	Flow-Insensitive
1	$\{x = [0,0], \ y = [0,0], \ z = [1,1], \ v = \top\}$	$\int M = \pm 1$
2	$\{x = [1,1], \ y = [0,0], \ z = [1,1], \ v = \top\}$	$\{W=\top\}$

6 Intervals

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

Model: $M(x) > M(y) > M(z) > M(v) \rightarrow M(w)$

	Line	Flow-Sensitive	Flow-Insensitive	
	1	$\{x = [0,0], y = [0,0], z = [1,1], v = \top\}$		
	2	$\{x = [1,1], \ y = [0,0], \ z = [1,1], \ v = \top\}$	$\{w=\top\}$	
	3	$\{x = [1,1], y = [0,0], z = [2,2], v = \top\}$		
9 Intervals				

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

Model: M(x) > M(y) > M(z) > M(v) > M(w)

Line	Flow-Sensitive	Flow-Insensitive
1	$\{x = [0,0], y = [0,0]\}$	
2	$\{x = [1, +\infty], y = [0, 0]\}$	$\{z = [1, +\infty], \\ v = \top, w = \top\}$
3	$\{x = [1, +\infty], y = [0, 0]\}$	· · , · · · j
	6 Intervals	

• Partially flow-sensitive interval analysis (budget: 10 intervals)

1: x = 0; y = 0; z = 1; v = input(); w = input(); 2: x = z; 3: z = z + 1; 4: y = x; 5: assert(y > 0); // Query 1 (hold) 6: assert(z > 0); // Query 2 (hold) 7: assert(v == w); // Query 3 (may fail)

Model: M(x) > M(y) > M(z) > M(v) > M(w)

Line	Flow-Sensitive	Flow-Insensitive
1	$\{x = [0,0], y = [0,0]\}$	{z = [1,+∞], v = ⊤, w = ⊤}
2	$\{x = [1, +\infty], y = [0, 0]\}$	
3	$\{x = [1, +\infty], y = [0, 0]\}$	
4	${x = [1,+\infty], y = [1,+\infty]}$	
	8 Intervals	

Learning Controller

- Controller $\pi : \mathbf{F} \to \Pr(\mathbf{A})$ where $\mathbf{A} = \{0, \dots, 100\}$
 - Input: a feature vector describing the current status
 - Output: probability distribution on % of variables that should be treated flow-insensitively

Learning Controller

- Controller $\pi : \mathbf{F} \to \Pr(\mathbf{A})$ where $\mathbf{A} = \{0, \dots, 100\}$
 - Input: a feature vector describing the current status
 - Output: probability distribution on % of variables that should be treated flow-insensitively
- Value function $Q : \mathbf{F} \times \mathbf{A} \rightarrow [0, 1]$
 - Score to every pair of feature vector and action

Learning Controller

- Controller $\pi : \mathbf{F} \to \Pr(\mathbf{A})$ where $\mathbf{A} = \{0, \dots, 100\}$
 - Input: a feature vector describing the current status
 - Output: probability distribution on % of variables that should be treated flow-insensitively
- Value function $Q : \mathbf{F} \times \mathbf{A} \rightarrow [0, 1]$
 - Score to every pair of feature vector and action

•
$$\pi_Q(\mathbf{f})(\mathbf{a}) = \frac{Q(f,a)}{\sum_{a' \in A} Q(f,a')}$$

Value Function $Q: \mathbf{F} \times \mathbf{A} \rightarrow [0, 1]$

Value Function $Q: \mathbf{F} \times \mathbf{A} \rightarrow [0, 1]$

- Feature abstraction function α : State \rightarrow **F** where **F** = [0, 1]⁴
 - 1. The inverse of memory budget
 - 2. Current memory consumption divided by the total budget
 - 3. Current lattice position divided by the lattice height
 - 4. Current workset size divided by the total workset size

Value Function $Q: \mathbf{F} \times \mathbf{A} \rightarrow [0, 1]$

- Feature abstraction function α : State \rightarrow **F** where **F** = [0, 1]⁴
 - 1. The inverse of memory budget
 - 2. Current memory consumption divided by the total budget
 - 3. Current lattice position divided by the lattice height
 - 4. Current workset size divided by the total workset size
- Reward : [0, 1]
 - relative #alarms w.r.t. flow-sensitive and insensitive result
 - 0 if #alarms == #flow-insensitive alarms
 - 1 if #alarms == #flow-sensitive alarms

- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)

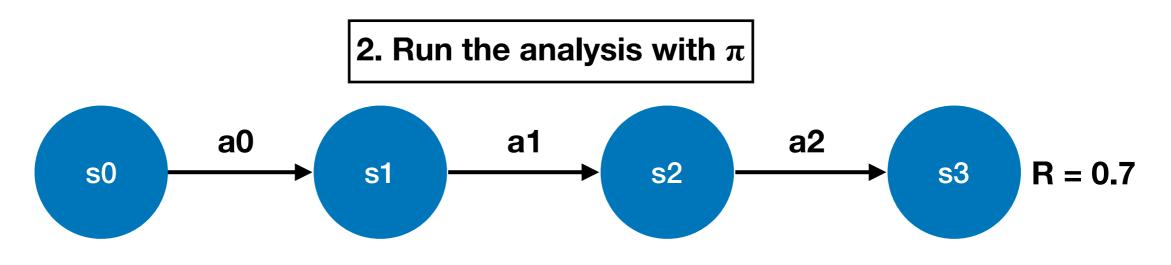
- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)

1. Initialize π with a random policy

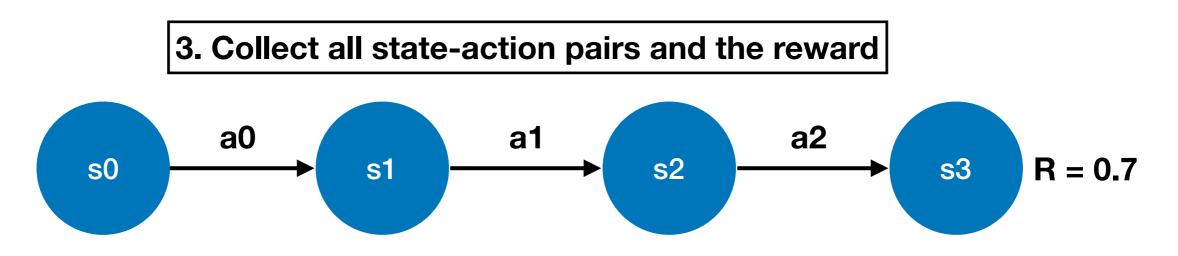
- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)

2. Run the analysis with $\boldsymbol{\pi}$

- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)



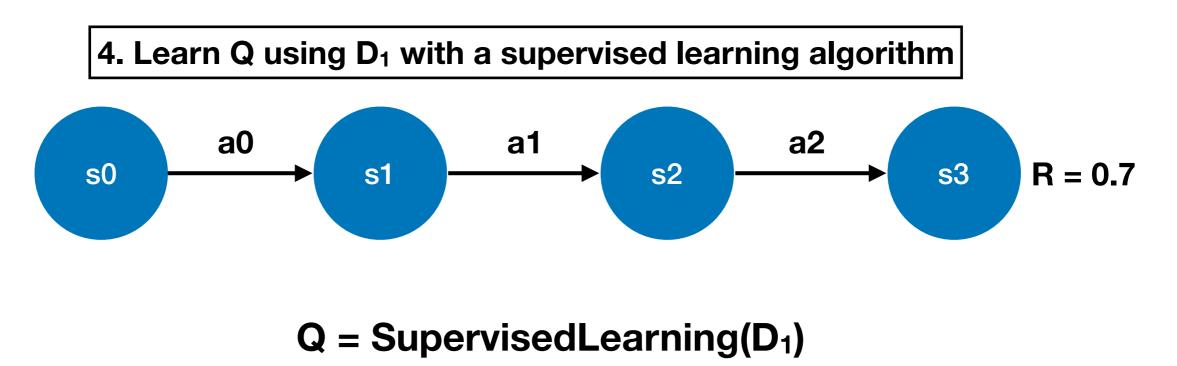
- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)



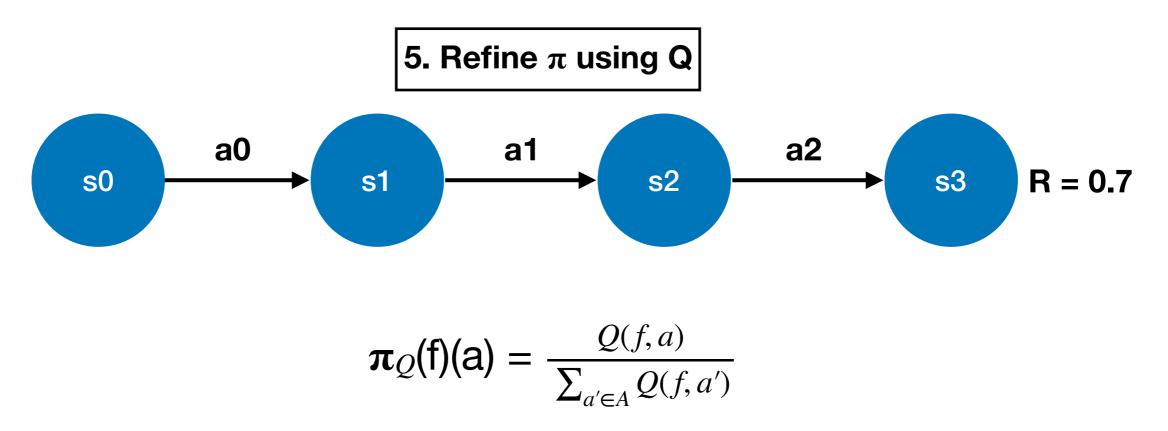
 $D_1 = \{(<\alpha(s_0), a_0>, 0.7), (<\alpha(s_1), a_1>, 0.7), (<\alpha(s_2), a_2>, 0.7)\}$

*For brevity heuristics are omitted

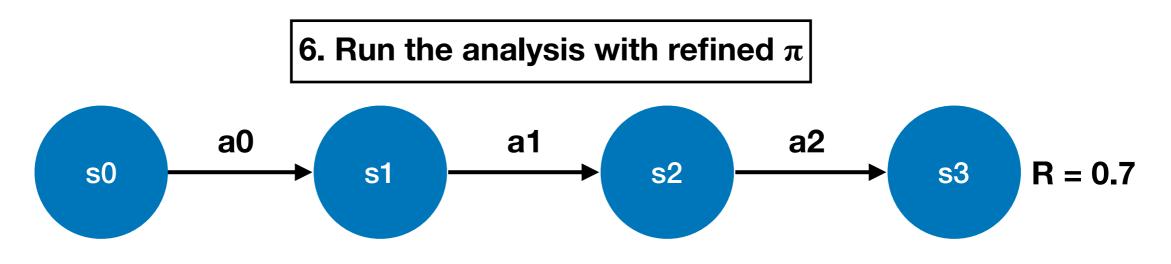
- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)



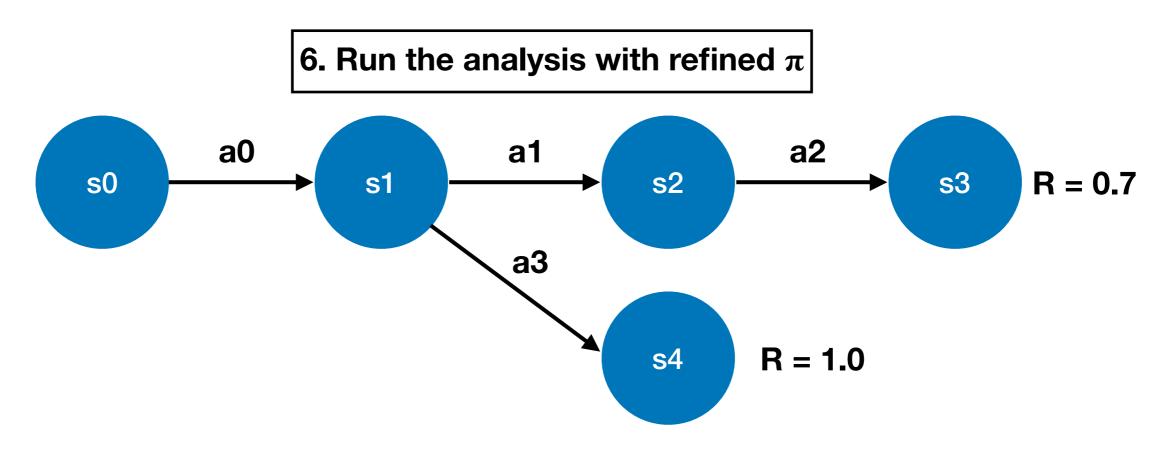
- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)



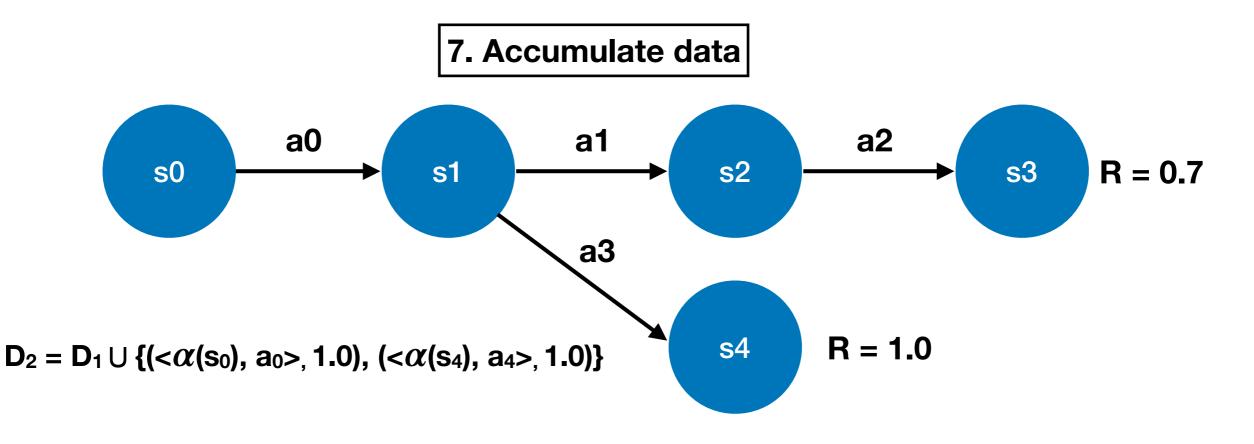
- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)



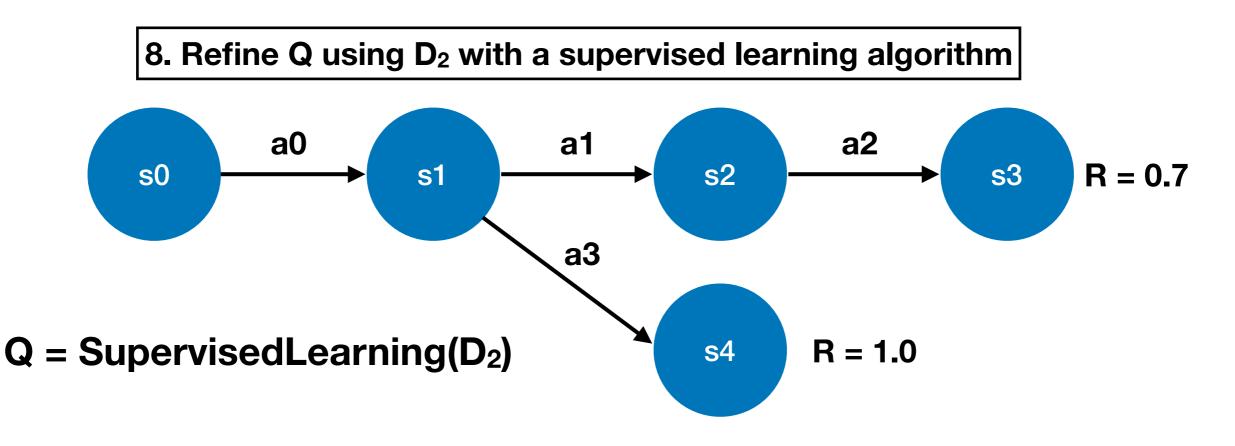
- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)



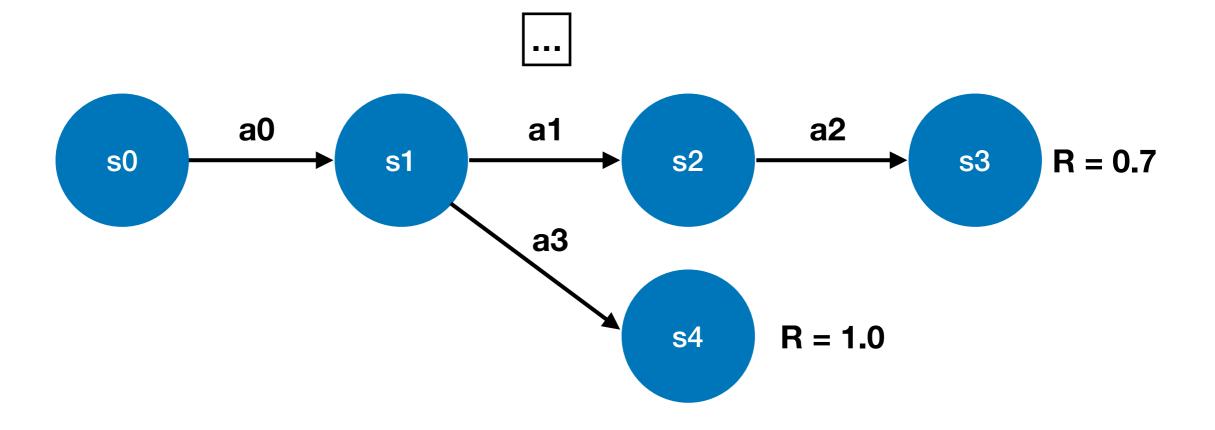
- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)



- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)



- SARSA-style algorithm from reinforcement learning
 - from a training set (i.e., batch mode)
 - with common heuristics (discounted reward, e-greedy search)



Outline

- Motivation
- Learning Framework
- Experimental Results
- Conclusion

- Training with 10 small programs (15-80KLOC)
 - with small memory limits

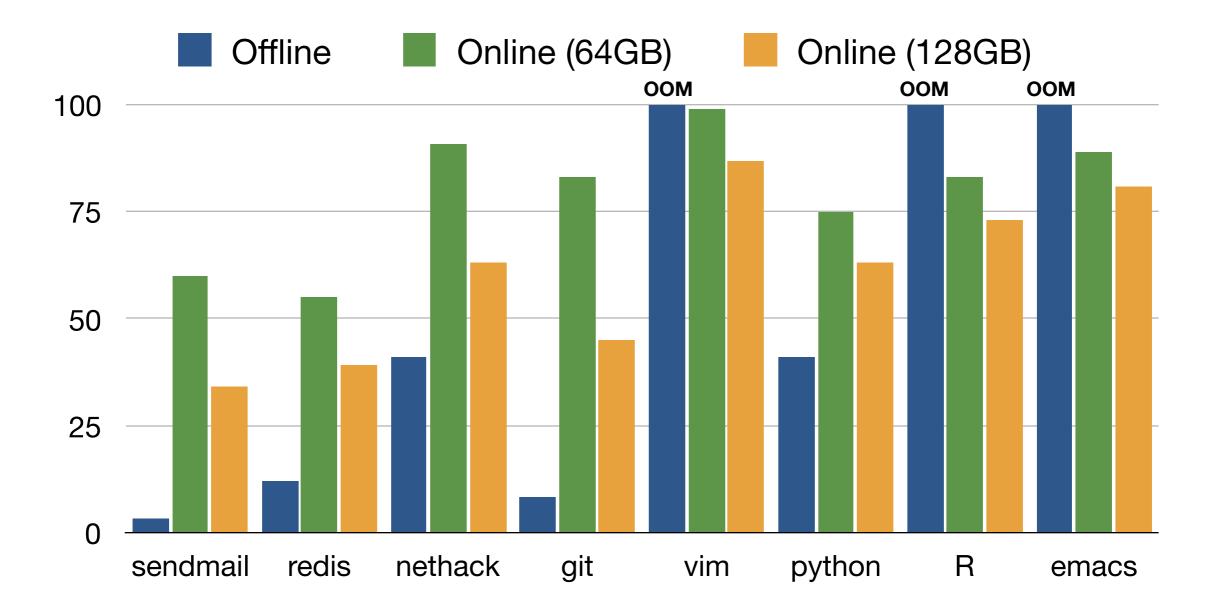
- Training with 10 small programs (15-80KLOC)
 - with small memory limits
- Test with 8 large programs (129-503KLOC)
 - 64 / 128 GB memory limits

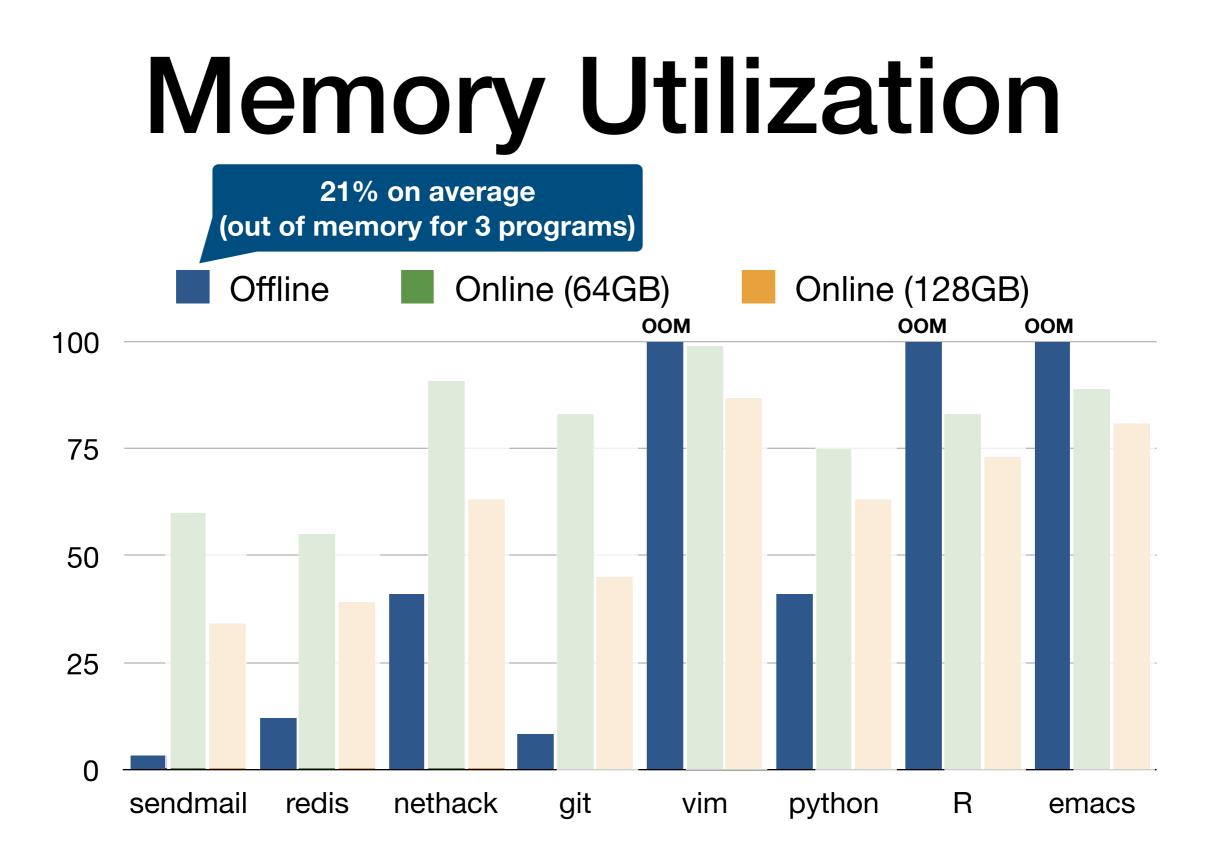
- Training with 10 small programs (15-80KLOC)
 - with small memory limits
- Test with 8 large programs (129-503KLOC)
 - 64 / 128 GB memory limits
- Measure buffer-overrun and null-dereference alarms

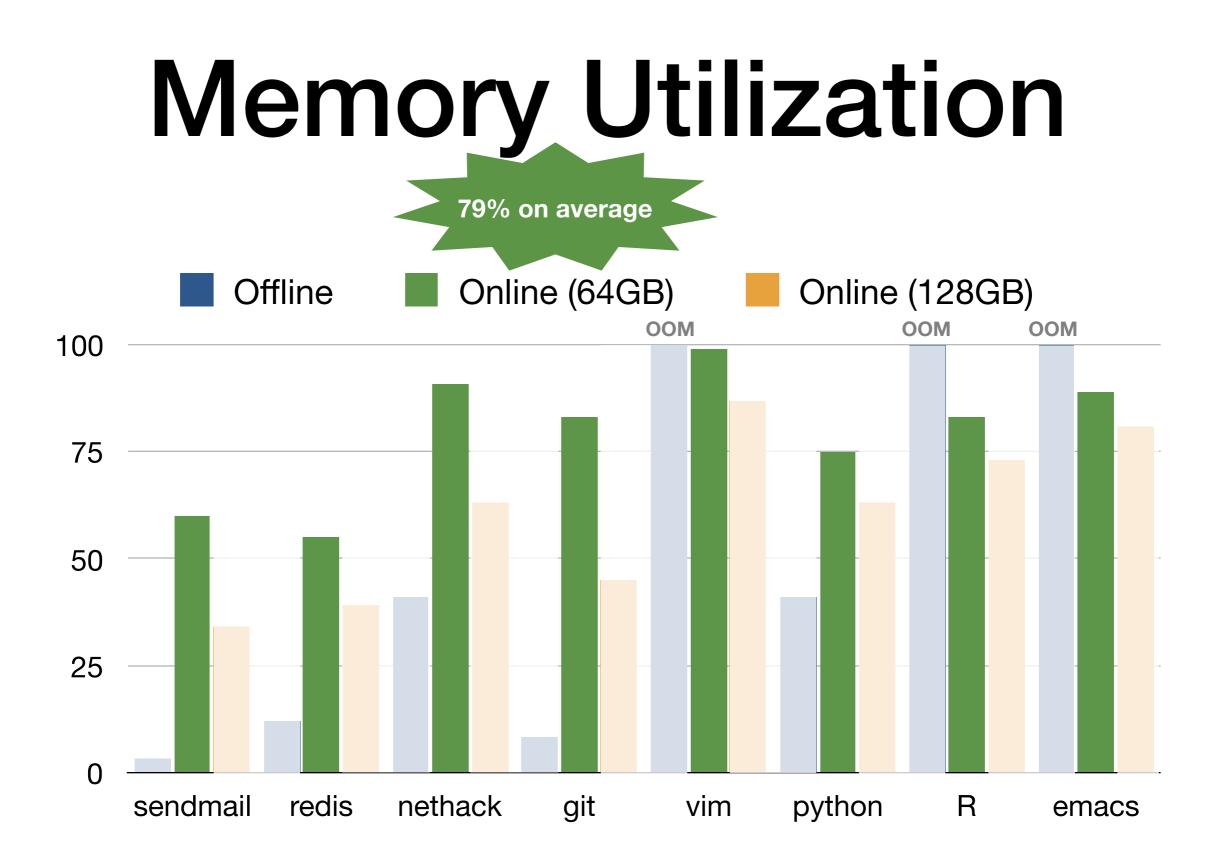
- Training with 10 small programs (15-80KLOC)
 - with small memory limits
- Test with 8 large programs (129-503KLOC)
 - 64 / 128 GB memory limits
- Measure buffer-overrun and null-dereference alarms
- Trigger controller when the OCaml runtime allocates new memory chunks

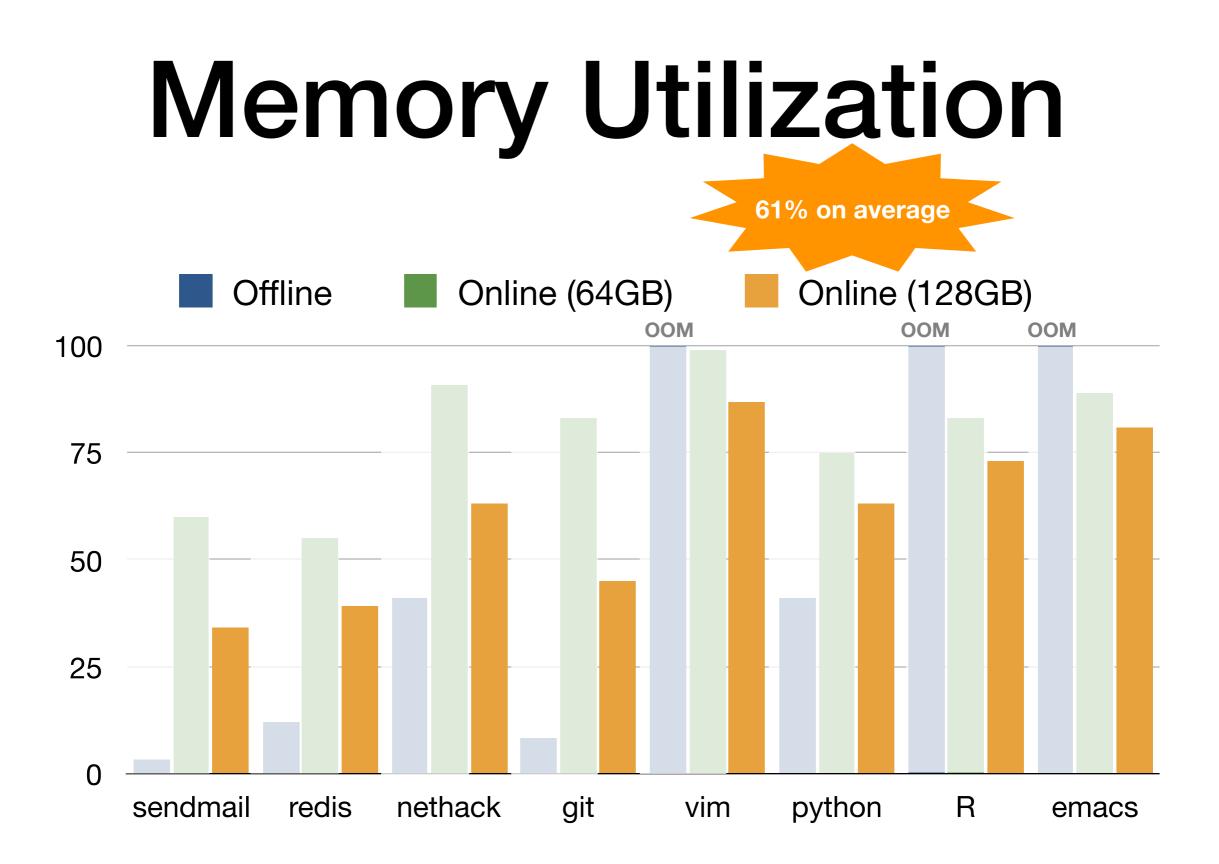
- Training with 10 small programs (15—80KLOC)
 - with small memory limits
- Test with 8 large programs (129-503KLOC)
 - 64 / 128 GB memory limits
- Measure buffer-overrun and null-dereference alarms
- Trigger controller when the OCaml runtime allocates new memory chunks
- Compared to partially flow-sensitive analysis
 - 10% of variables chosen offline with 128GB of memory

Memory Utilization

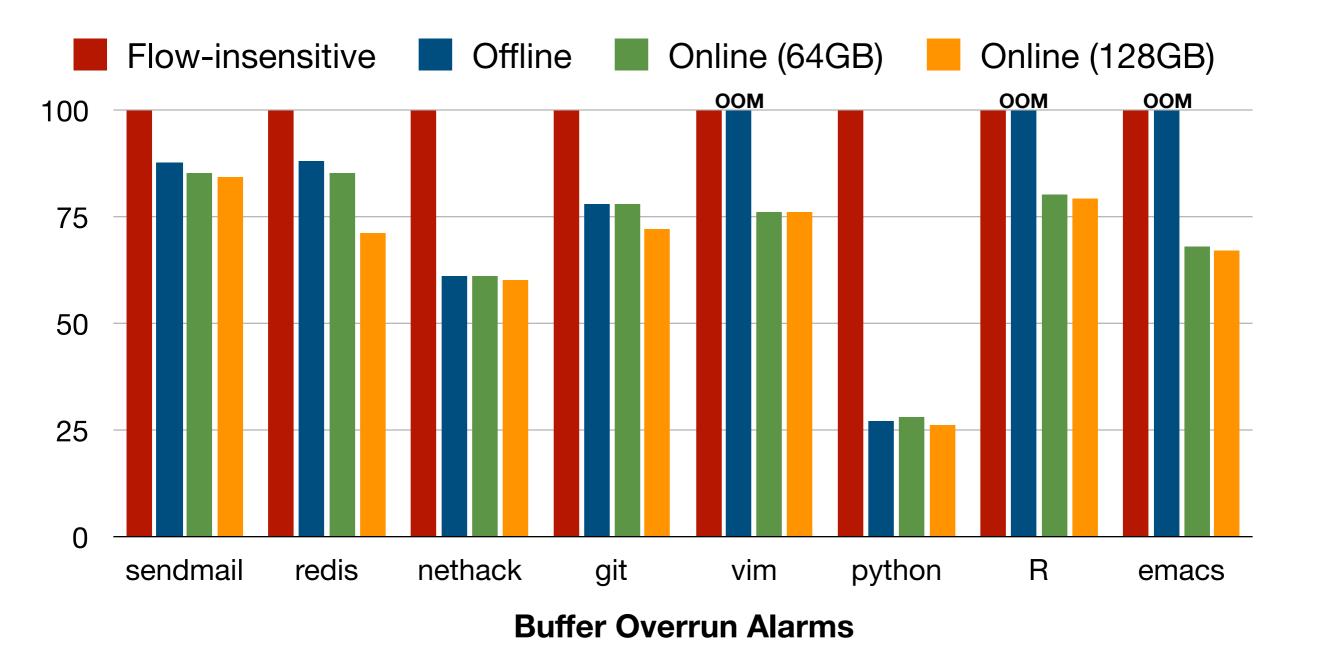




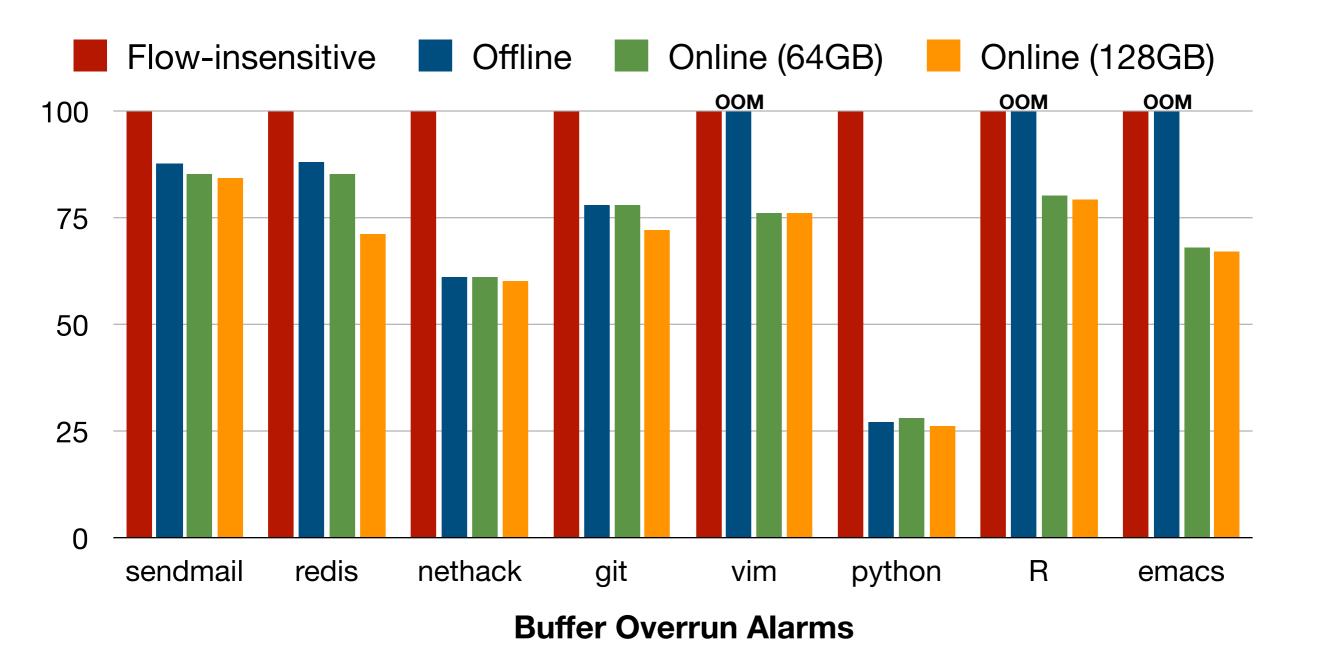


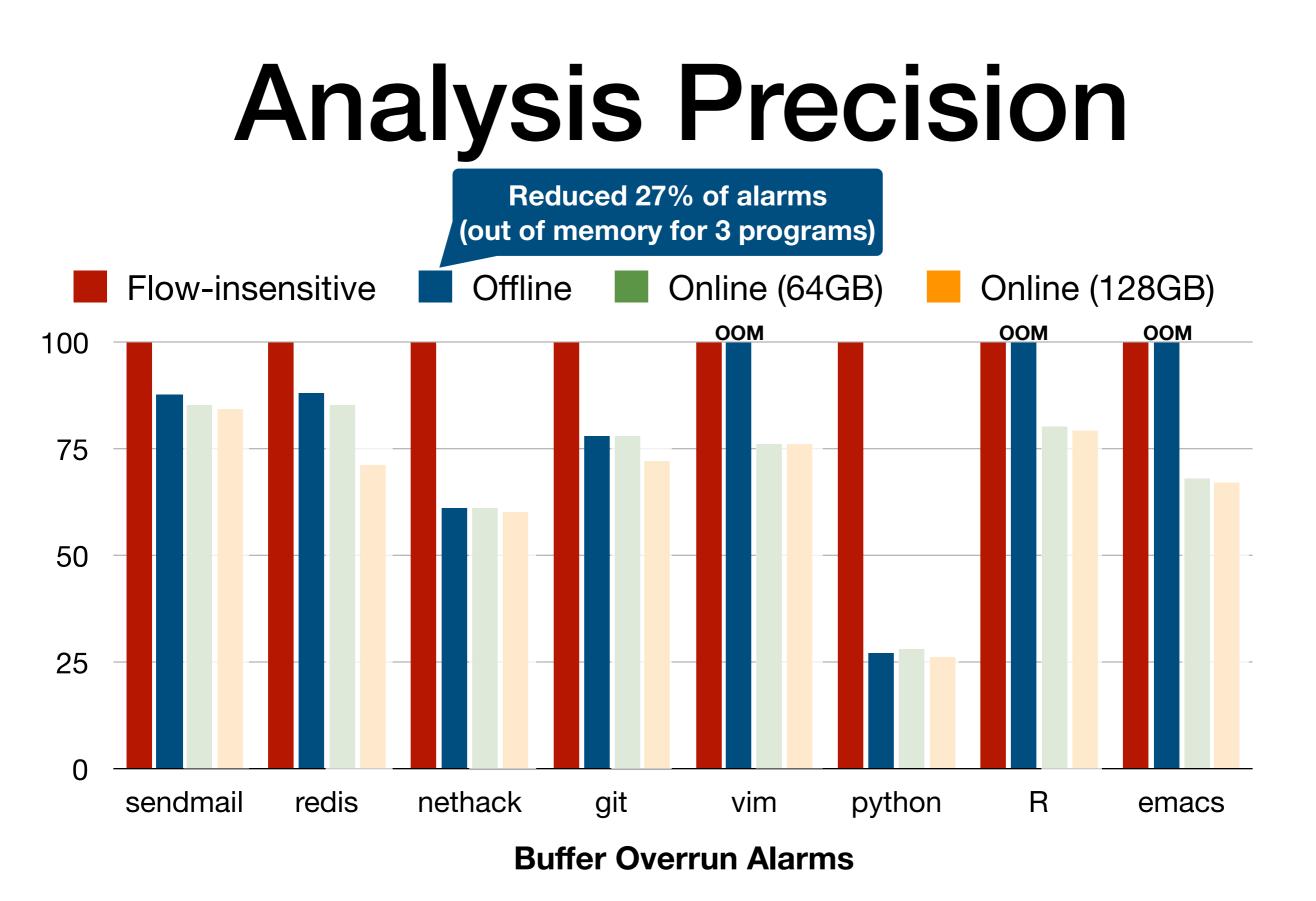


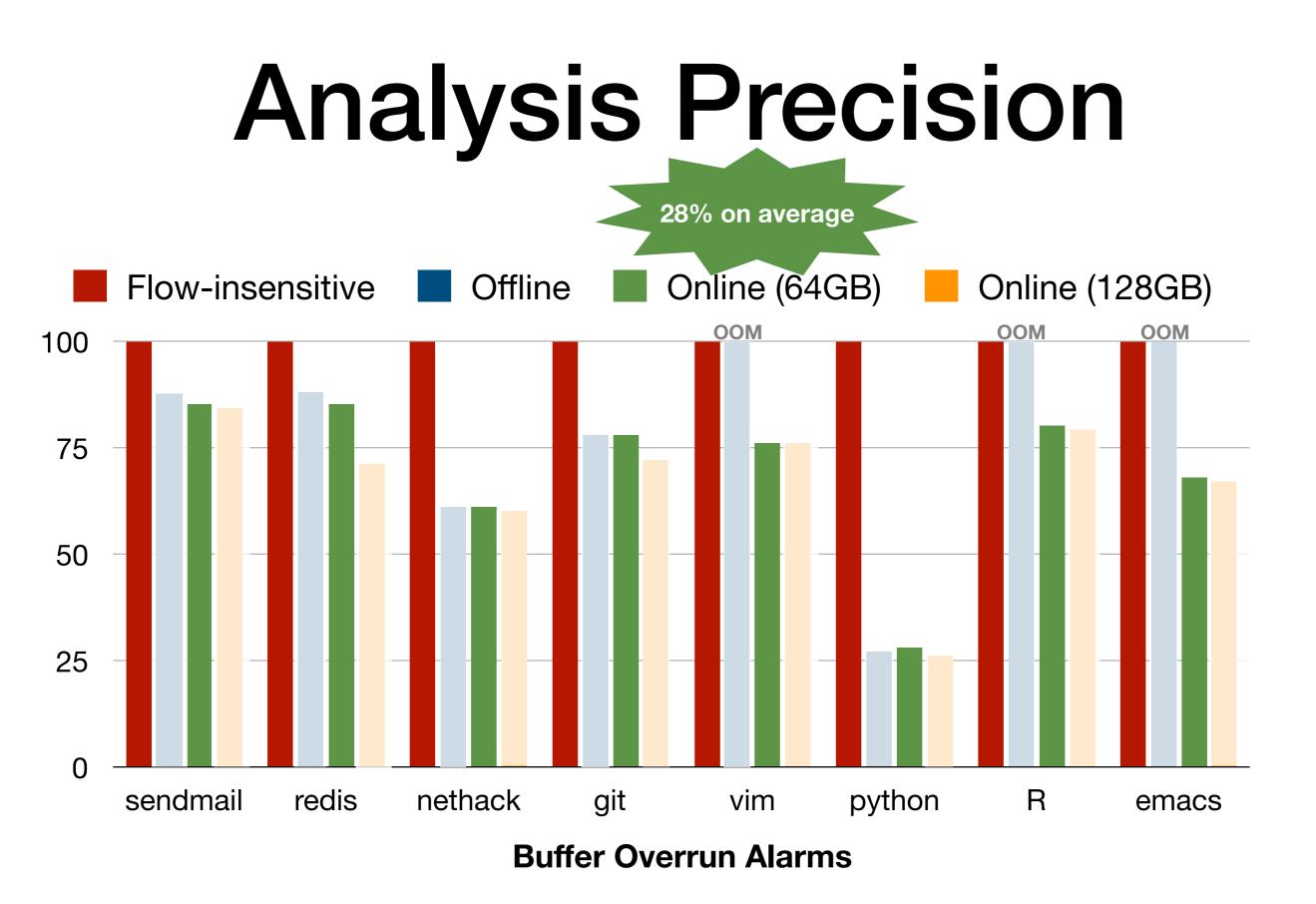
Analysis Precision

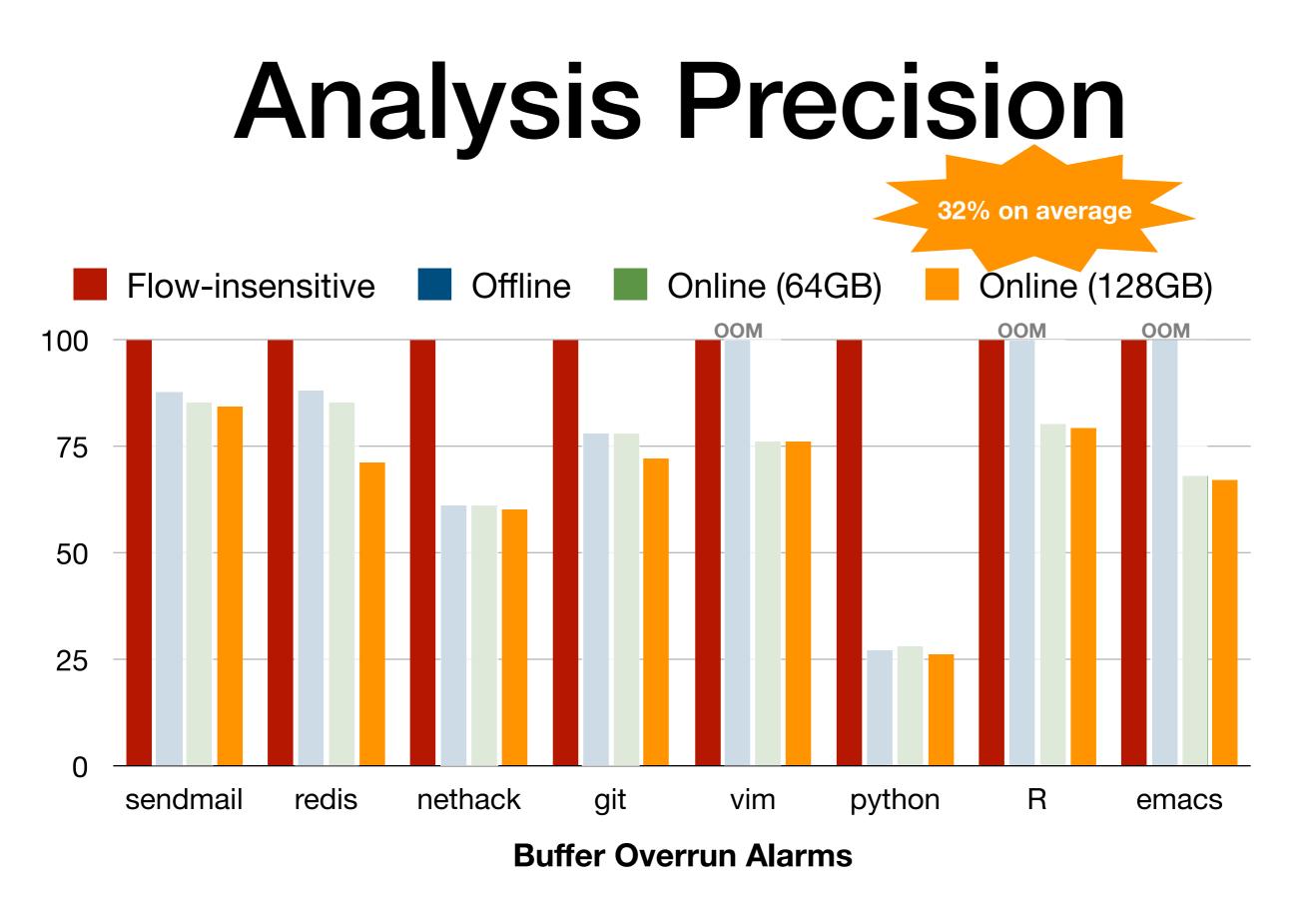


Analysis Precision

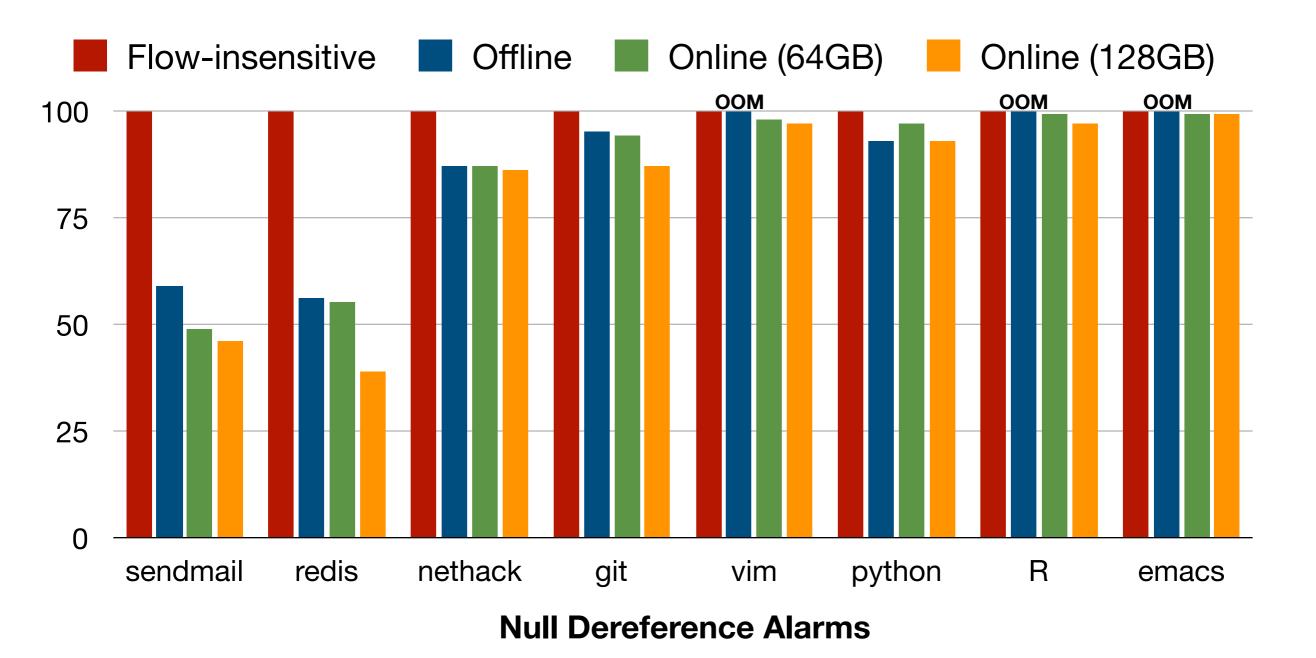


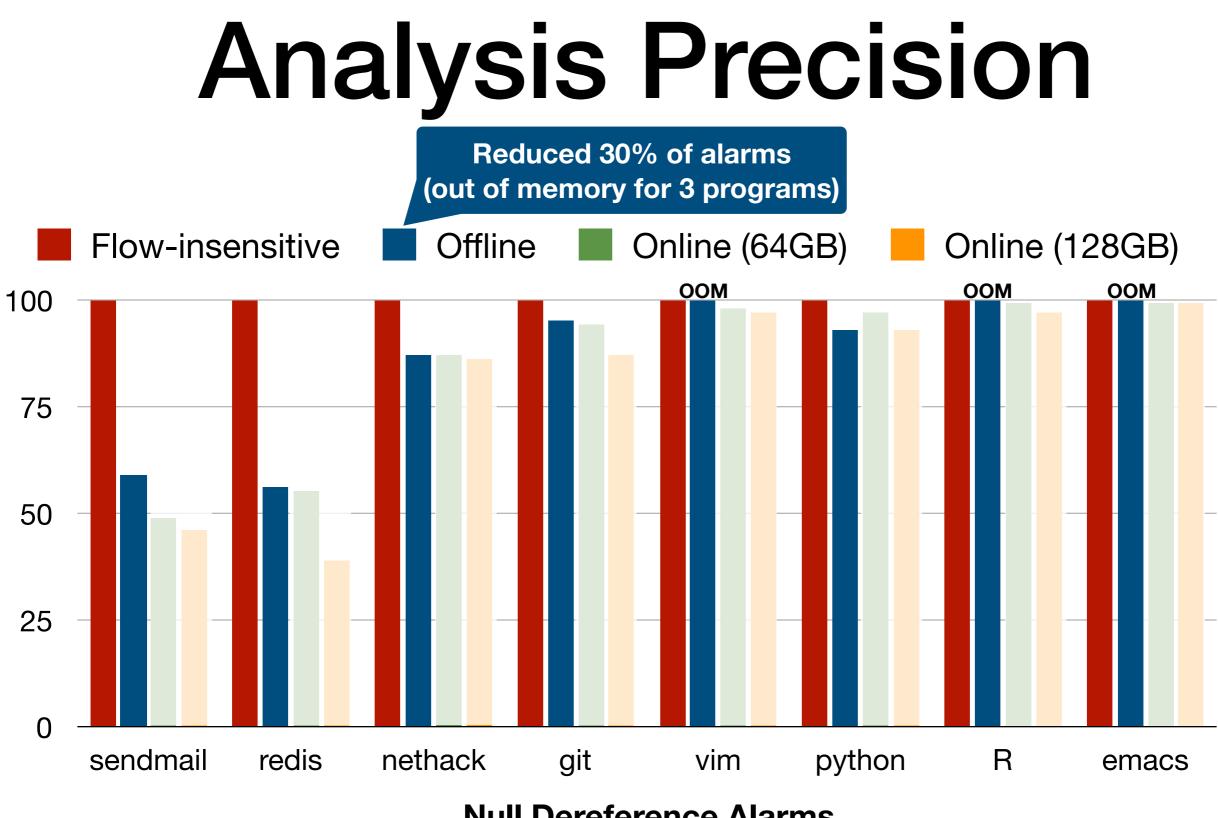




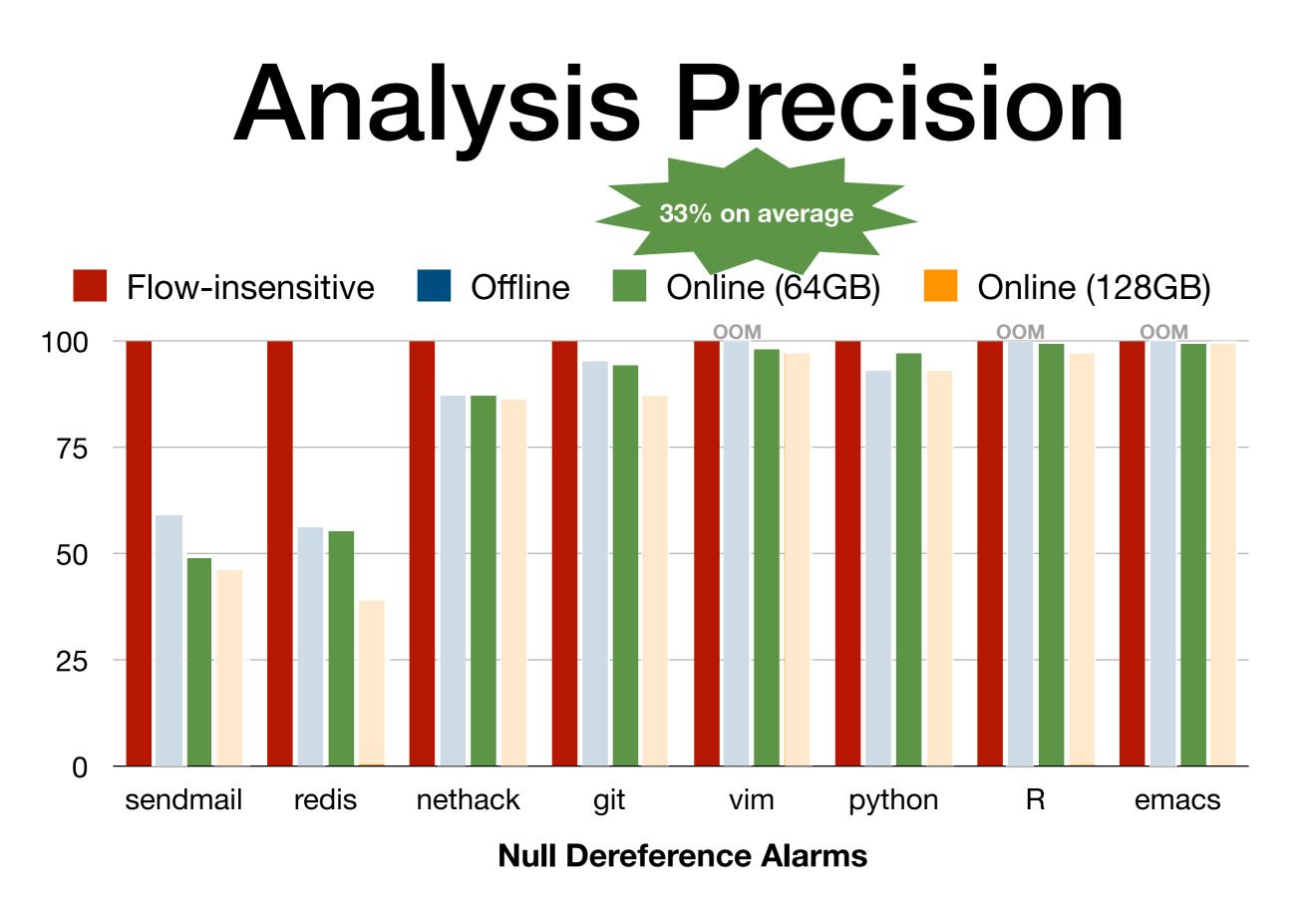


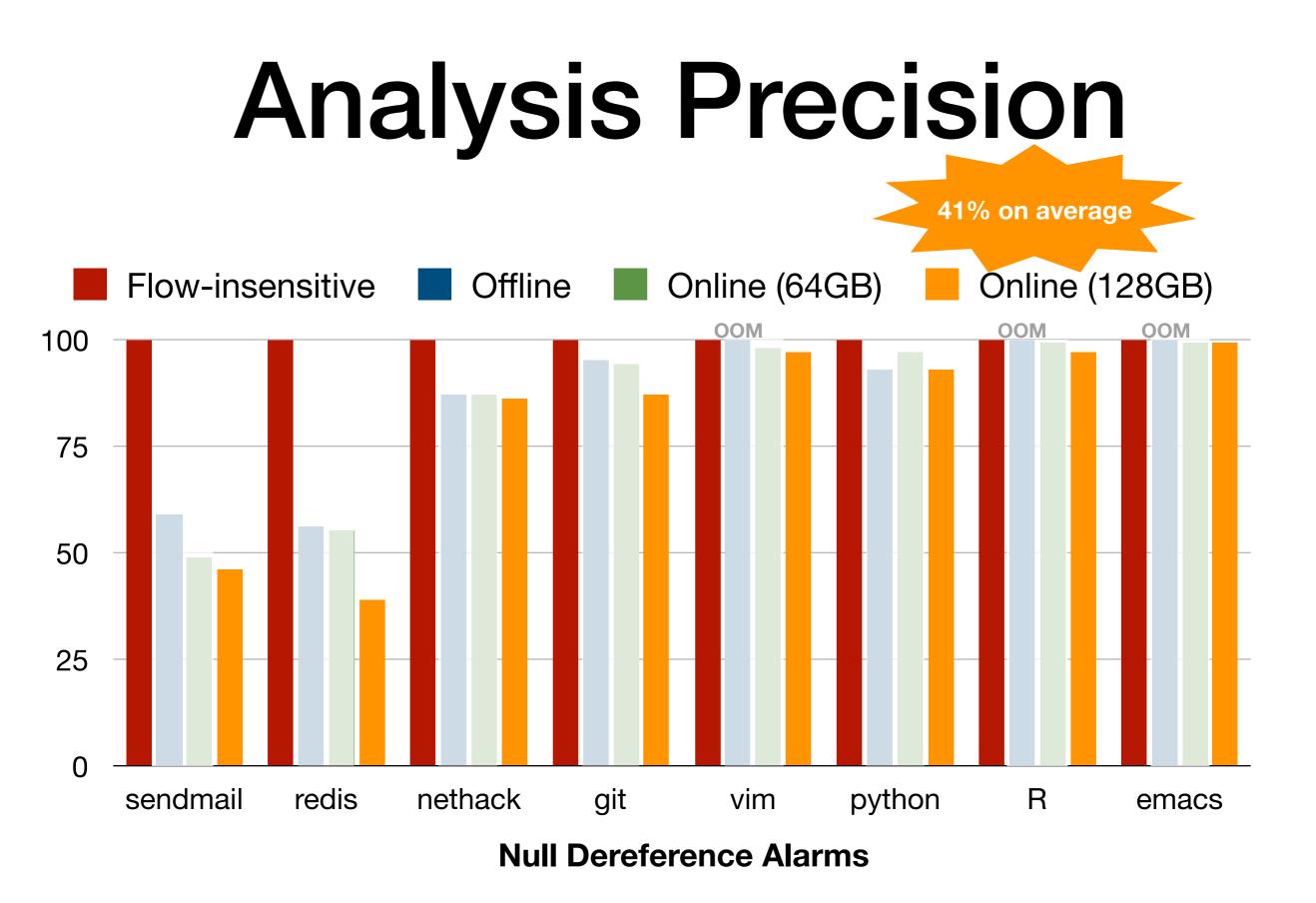
Analysis Precision





Null Dereference Alarms





Conclusion

Conclusion

- A systematic framework for resource-aware program analysis
 - online abstraction coarsening
 - reinforcement learning algorithm for learning controller
 - attention to physical resource as well as logical behavior

Conclusion

- A systematic framework for resource-aware program analysis
 - online abstraction coarsening
 - reinforcement learning algorithm for learning controller
 - attention to physical resource as well as logical behavior

