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Abstract—We present a new technique for developing a
resource-aware program analysis. Such an analysis is aware
of constraints on available physical resources, such as memory
size, tracks its resource use, and adjusts its behaviors during
fixpoint computation in order to meet the constraint and achieve
high precision. Our resource-aware analysis adjusts behaviors
by coarsening program abstraction, which usually makes the
analysis consume less memory and time until completion. It does
so multiple times during the analysis, under the direction of what
we call a controller. The controller constantly intervenes in the
fixpoint computation of the analysis and decides how much the
analysis should coarsen the abstraction. We present an algorithm
for learning a good controller automatically from benchmark
programs. We applied our technique to a static analysis for C
programs, where we control the degree of flow-sensitivity to meet
a constraint on peak memory consumption. The experimental
results with 18 real-world programs show that our algorithm
can learn a good controller and the analysis with this controller
meets the constraint and utilizes available memory effectively.

Index Terms—static analysis; resource constraint; learning

I. INTRODUCTION

When a static program analysis aims at reasoning about
deep semantic properties, it typically requires a huge amount
of resources such as memory [1]–[4]. The fixpoint computation
of the analysis is usually neither compositional nor incremen-
tal. As a result, when the analysis runs out of memory or hits
time limit, its intermediate results are simply discarded. Some
researchers have suggested to make the analysis store interme-
diate results and then resume it with more resources [5]. There
has also been work on estimating the amount of resource use,
such as analysis time, before the analysis begins [6]. However,
none of these existing techniques addresses the essence of the
issue, which asks for a new type of program analysis that is
aware of a constraint on available resources and constantly
controls its resource use during fixpoint computation.

The amount of resource that a program analysis needs for a
given analysis task highly depends on the degree of program
abstraction employed by the analysis, such as flow-sensitivity
and context-sensitivity. For example, a flow-sensitive analysis
stores different abstract states for different program points,
unlike its flow-insensitive counterpart that computes only one
abstract state (which summarizes information for all program
points). In our experiments, the flow-insensitive interval analy-
sis on emacs-26.0.91 (503KLOC) requires 18GB of memory,
but the flow-sensitive counterpart needs more than 128GB.
Unfortunately, going beyond this general trend and predicting

the maximum amount of resource use is hard. Syntactic
characteristics of an analyzed program are not enough. For
instance, while vim60 (227KLOC) is smaller than emacs-
26.0.91, the flow-insensitive analysis consumes more memory
(33GB more) on the former than on the latter.

In this paper, we present a resource-aware program analysis.
This analysis is aware of a given resource constraint, tracks
its resource use during fixpoint computation, and constantly
adjusts its behavior via online abstraction coarsening. More
concretely, instead of fixing a program abstraction prior to
the main part of the analysis (i.e. fixpoint computation), our
resource-aware analysis starts with the most expensive ab-
straction, and gradually coarsens the abstraction by observing
the analysis behavior and its resource use. This coarsening
is directed by a controller, which continually intervenes the
fixpoint computation of the analysis, monitors resource use
and other status of the analysis (such as workset size), and
decides how much the analysis should coarsen abstraction. It
is the quality of this controller that determines the success of
our resource-aware analysis in terms of analysis precision and
conformance to resource constraint. We present an algorithm
for learning such a controller automatically from a given
codebase. The algorithm repeatedly runs the analysis with a
gradually improving controller on all training programs in the
codebase, collects important parts of traces of these analysis
runs, and uses them to improve the controller. We formalize
our approach in a general setting, so that it becomes applicable
to a wide range of static program analyses.

We instantiated our approach with a partially flow-sensitive
analysis for C programs, and evaluated it with 8 large pro-
grams (130–503KLOC). This instantiated analysis adjusts the
degree of flow-sensitivity online, under the direction of a
controller that was learned from 10 other smaller programs
(15-80KLOC). We compared this analysis with a baseline
analysis [7] that does not control flow-sensitivity online but
picks the degree of flow-sensitivity before the analysis begins.
Both analyses control flow-sensitivity by choosing a subset of
variables in the program to be analyzed flow-sensitively. When
this baseline analysis was set to choose the 10% of variables
for flow-sensitivity as in [7], it could not analyze 3 out of the 8
programs under the 128GB of memory budget. It turns out that
to do so, the baseline should be set to choose less than 3%, a
number difficult to find a priori. Meanwhile, our analysis did
not require any such predefined parameter. Once the 128GB



limit was given, it adapted program abstraction appropriately,
and completed all the 8 analysis tasks. The outcome was the
same when we changed the budget to 64GB. Furthermore, our
analysis was more precise than the baseline that was set to use
the 3% of variables for flow-sensitivity. For null dereference, it
reported 15% and 21% fewer alarms under 64GB and 128GB
budgets, and for buffer overrun, 3% and 6% fewer alarms.

We summarize our contributions below:
• We present resource-aware program analysis, a new ap-

proach to meet a given resource requirement by constantly
observing the use of physical resources and coarsening
program abstraction online based on the observations.

• We propose an algorithm for learning a controller for
abstraction coarsening. Our learning algorithm is inspired
by batch mode reinforcement learning [8]–[10].

• We demonstrate the effectiveness of our approach with a
real-world static analyzer and large C programs.

II. OVERVIEW

Our main research question is how to build a program anal-
ysis that would work well under a given resource constraint.
In particular, we are interested in constraints on memory. In
this section, we illustrate this question and our learning-based
solution using partially flow-sensitive interval analysis.

A. Problem: Static Analysis under Resource Constraint

1 x = 0; y = 0; z = 1; v = input(); w = input();
2 x = z;
3 z = z + 1;
4 y = x;
5 assert(y > 0); // Query 1 (hold)
6 assert(z > 0); // Query 2 (hold)
7 assert(v == w); // Query 3 (may fail)

Consider the program above. The series of assignments until
the line 4 set x, y to 1 and z to 2, while letting v and w keep
the values selected by the user. As a result, Queries 1 and 2
hold, but Query 3 may fail.

Now consider the problem of developing a partially flow-
sensitive interval analysis that can prove Queries 1 and 2
of our example, but does not keep more than 10 intervals
during the analysis of the example. Here we do not regard >
(meaning [−∞,∞]) as interval. More generally, the analysis
takes a program P and a bound B on the maximum number
of intervals that can be kept in memory during the analysis
of P .1 We want the analysis to prove as many queries in P
as possible while respecting the constraint on memory. This
problem is an instance of a general resource-constrained static-
analysis problem to which we will return later.

The problem cannot be solved by the standard flow-sensitive
or flow-insensitive analysis. The former does not meet the
resource constraint. When it does its best in terms of accuracy,
the flow-sensitive analysis computes the following result that
associates an abstract state at each program point:

1For brevity, we assume that a resource bound is given as the maximum
number of intervals. In our implementation, however, the analyzer takes the
maximum amount of memory budget.

line flow-sensitive abstract state
1 {x 7→ [0, 0], y 7→ [0, 0], z 7→ [1, 1], v 7→ >, w 7→ >}
2 {x 7→ [1, 1], y 7→ [0, 0], z 7→ [1, 1], v 7→ >, w 7→ >}
3 {x 7→ [1, 1], y 7→ [0, 0], z 7→ [2, 2], v 7→ >, w 7→ >}
4 {x 7→ [1, 1], y 7→ [1, 1], z 7→ [2, 2], v 7→ >, w 7→ >}

Note that the analysis uses 12 intervals, two more than allowed
10. The flow-insensitive analysis, on the other hand, is not
accurate enough, although it meets the constraint. It computes
a single memory state where variables y and z have the
intervals [0,+∞] and [1,+∞], respectively, which are not
strong enough to prove Query 1.

B. Solution: Online Abstraction Coarsening

Our solution is a resource-aware static analysis that coarsens
program abstraction during analysis, adaptively based on a
given resource constraint, the current resource usage and anal-
ysis states, and the properties of the program. This adaptive
online coarsening is directed by two functions M and π.

The first function M, called model, assigns a number
between 0 and 1 (including boundary values) to each variable.
The assigned number M(v) indicates how important it is to
analyze the variable v flow-sensitively in terms of removing
false alarms. We use M to rank variables. For instance, for
our example program, we may have a model M that satisfies
M(w) <M(v) <M(z) <M(y) <M(x). The model M
induces the ranking w < v < z < y < x, which suggests,
among other things, that the top two beneficiaries of flow
sensitivity are variables x and y. Note that the suggestion is
good; for our goal of proving Queries 1 and 2, it suffices to
treat only x and y flow-sensitively.

The second function π, called controller, takes information
about the current status of the analysis, such as current
memory usage, and decides the number of program variables
that are currently treated flow-sensitively but should be treated
otherwise. That is, it decides how to coarsen the current
program abstraction. Note that analyzing fewer variables flow-
sensitively entails keeping fewer intervals in memory, so that
the analysis is more likely to meet the constraint (i.e. at most
ten intervals in memory). The function π is at the heart of the
analysis’s effort for meeting the constraint.

Our analysis uses these functions M and π and analyzes
our example program as follows. In the beginning, it treats all
program variables flow-sensitively. But after a fixed amount
of computation, the analysis pauses the usual fixpoint compu-
tation, gathers information about resource usage and abstract
states, and asks the controller π how many more variables it
should analyze flow-insensitively. For instance, the analysis
might pause at the line 2, and the controller π might instruct
that 20% (5× 0.2 = 1) of variables should be analyzed flow-
insensitively. Using M, the analysis ranks variables, picks w

at the bottom of the ranking as a variable to be analyzed flow-
insensitively, and coarsens the analysis results as follows:

line FS abstract state FI abstract state
1 {x 7→ [0, 0], y 7→ [0, 0], z 7→ [1, 1], v 7→ >} {w 7→ >}2 {x 7→ [1, 1], y 7→ [0, 0], z 7→ [1, 1], v 7→ >}



Note that the analysis no longer keeps the abstract value
of w per program point, but it maintains just a single flow-
insensitive memory state for it.

This controller-guided abstraction coarsening happens reg-
ularly. Suppose that the second one occurs when the analysis
reaches line 3. The analysis result at this moment is:

line FS abstract state FI abstract state
1 {x 7→ [0, 0], y 7→ [0, 0], z 7→ [1, 1], v 7→ >}
2 {x 7→ [1, 1], y 7→ [0, 0], z 7→ [1, 1], v 7→ >} {w 7→ >}
3 {x 7→ [1, 1], y 7→ [0, 0], z 7→ [2, 2], v 7→ >}

Note that the analysis already uses nine intervals and is close to
the resource limit. The controller π may act more aggressively
now and instruct the analysis to coarsen the abstraction of
the half of the remaining variables, i.e., to analyze two more
variables flow-insensitively. If such an instruction is indeed
given, the analysis chooses variables z and v based on their
low M-ranking, and changes the analysis result as follows:

line FS abstract state FI abstract state
1 {x 7→ [0, 0], y 7→ [0, 0]} {z 7→ [1,+∞],

v 7→ >, w 7→ >}2 {x 7→ [1,+∞], y 7→ [0, 0]}
3 {x 7→ [1,+∞], y 7→ [0, 0]}

The variables z and v are now treated flow-insensitively,
and their abstract values are changed by flow-independent
counterparts. Note that the abstract values of x at lines 2 and 3
are updated as well. These updates are due to the assignment
x = z at line 2, which propagates to x the change of z’s
abstract value from [1, 1] to [1,∞].

Finally, the analysis reaches the fixpoint with the abstract
state {x 7→ [1,+∞], y 7→ [1,+∞]} for the last line (i.e. lines
4–7). Note that the fixpoint is strong enough to prove Queries
1 and 2, and that the resource constraint is also met.

C. Learning a Controller π

Whether our analysis performs well or not depends on M
and π. This naturally raises the question: how to come up with
goodM and π? Answering the question aboutM is relatively
easy. There already exist techniques for automatically learning
a scoring function like M from a codebase [7]. The situation
about π is, however, not so simple. A controller π is an exam-
ple of what reinforcement learning researchers call policy, and
learning it from a codebase requires solving an optimization
problem more difficult than those involved in learning M.
For this purpose, we have developed an algorithm by altering
the batch version of a SARSA-style on-policy algorithm from
reinforcement learning [8], [11].

For each program P , let SP be a set of data structures
that store all the runtime information of the analysis, such as
current abstract states, memory usage and workset size. We
call s ∈ SP analysis state. Our algorithm is equipped with a
feature map αP : SP → F for each program P , where F is a
subset of Rn for some n. The map αP takes an analysis state
s ∈ SP , which may refer to specific aspects of the program
P being analyzed, and returns a real-valued vector f ∈ F that
may not make such reference.

Given a collection Ptr of programs, our algorithm con-
structs a function π : F → Pr(A), which takes informa-

tion about the current status of the analysis in the feature-
vector form, and returns a probability distribution on A =
{0, 1, . . . , 99, 100}. Elements in A represent percentages of
variables that have been treated flow-sensitively so far by the
analysis but will be treated differently in the future. When
analyzing a program P , our analysis uses the function π in
conjunction with αP . It first transforms s ∈ SP to a feature-
vector representation αP (s), then computes a probability
distribution π(αP (s)) over the percentages in A, and finally
returns a ∈ A with the highest probability.

In order to construct a controller, our algorithm builds a
function Q : F ×A → [0, 1], which assigns a score to every
pair of feature vector f and percentage a. An ideal Q assigns a
high score to (f, a) when the following property holds: when
the current analysis state s is abstracted to f (i.e. αP (s) = f ),
treating a%-more variables flow-insensitively gives the best
analysis outcome in terms of both proving queries and meeting
the resource constraint. Once the algorithm finishes building
Q, it defines a controller πQ by2 πQ(f)(a) = Q(f,a)∑

a′∈AQ(f,a′) ,
which becomes the result of the algorithm.

The function Q is built by an iterative process, which
involves the invocation of the analysis on the programs in
the codebase Ptr. Let us illustrate how this is done when
our codebase is really simple: Ptr = {P0}. Recall that when
the analysis is run on P0 under a controller π, it may invoke
π ◦ αP0 multiple times with different analysis states.

When our algorithm starts, it draws a probability on A
from the uniform distribution on probabilities on A. This
becomes the initial value of π. Then, the algorithm runs
the analysis under the ε-noise version of π for some small
ε ∈ (0, 1) [11]. It means that when the analysis calls the
controller π with the current analysis state s ∈ SP0

, the con-
troller picks argmaxa(π(αP0

(s))(a)) with probability 1−ε, or
with probability ε, it picks one of the rest a′ ∈ A uniformly.
Suppose that this run follows the trajectory and score:

〈s0, a1, s1, a1, s2, a1, s3〉 : 0.7

The algorithm then replaces each si in the trajectory by
αP0(si), and generates labeled data as follows:

D1 = {(〈αP0(si), a1〉, 0.7) | i ∈ {0, 1, 2}}.

Next the algorithm uses D1 as a training set, and calls an off-
the-shelf supervised learning algorithm on it. The result of this
call becomes the intial Q.

Our algorithm then repeats the steps just described, but
with the controller πQ induced by Q instead of the randomly
initialized one. It runs the analysis with πQ. Suppose that this
time the analysis goes through the following path:

〈s0, a1, s1, a2, s4〉 : 1.0

The algorithm generates labeled data from this pair of trajec-
tory and score, and adds them to its training set:
D2 = D1 ∪ {(〈αP0

(s0), a1〉, 1.0), (〈αP0
(s1), a2〉, 1.0)}.

Note that the algorithm reuses the training data from the
previous iteration. This accumulation is important for the

2For this construction to work, we should have
∑
a′∈A Q(f, a′) > 0. The

algorithm ensures this condition.



efficiency of our learning algorithm, and is a well-known
technique in reinforcement learning where D2 is called replay
buffer [12]. As before, the algorithm invokes the off-the-shelf
supervised learning algorithm on D2, sets Q to the result of
this invocation, and defines πQ.

This process of learning Q is repeated until the algorithm
reaches a fixpoint or hits upon its iteration limit. The result of
our algorithm is the controller πQ for the last Q.

III. CONTROLLABLE PROGRAM ANALYSIS

Now we formalize our approach. In this section, we define a
class of program analyses equipped and guided by controllers.

Recall our notation SP for each program P . It is the set of
analysis states that may arise during the analysis of P . A state
s ∈ SP contains not only the usual logical information, such
as abstract states, but also the information about the runtime
status of the analysis, such as memory usage and workset size.
We formalize a controllable program analysis as a collection
of tuples (IP , TP , BP , RP ) indexed by a program P , where
the tuples have the following types: IP ∈ SP , TP : SP ×A→
SP , BP : SP → B, and RP : SP → [0, 1]. Intuitively, IP is
the initial analysis state, TP models a singe execution step of
the analysis, and BP (s) is a predicate for testing whether the
analysis is finished at the state s or not. The predicate BP (s)
is true if the analysis reaches a fixpoint or runs out of a given
resource budget. The last RP (s) reports the ratio between the
queries proved in s and all queries. If the analysis stops at s
because of a resource shortage, then RP (s) = 0.

Note that in order to transform a state s to the next s′, the
analysis TP should be given an additional parameter a ∈ A,
called action. We assume that the set A of actions is finite.
The main responsibility of a controller π is to select a good
action a using information stored in the current analysis state
s. A trajectory τ ∈ ΦP for a program P is a finite alternating
sequence of states and actions:

τ = 〈s0, a0, s1, a1, s2, . . . , an, sn+1〉
such that TP (sk, ak) = sk+1, BP (sn+1) = true, and
BP (sk) = false for all 0 ≤ k ≤ n. We say that τ starts
at s0. If s0 is the initial state of the analysis IP , we say
that τ is complete. We require that for every program P ,
there should exist an upper bound N > 0 on the lengths of
trajectories τ ∈ ΦP . This requirement means that for each
program P , regardless of how a controller chooses an action
in each analysis state, the analysis of P terminates in less than
N/2 number of steps.

IV. CONTROLLER

A controller is our main addition to a static analysis, and
is in charge of selecting an appropriate action before each
analysis step. Formally, it is a tuple of

1) a subset F ⊆ Rn that consists of feature vectors;
2) a controller π : F → Pr(A) from feature vectors to

probability distributions on A; and
3) a feature map αP : SP → F for each program P , which

abstracts analysis states to feature vectors.

A good way to understand this definition is to go through
the steps through which the analysis uses it. Assume that we
are given a program P to analyze. For brevity, we further
assume that the controller is used at each analysis step. In
the implementation, however, the controller is triggered when
some particular events, such as new memory allocation, occur.
The details will appear in Section VI.

The analysis uses the controller to define an action selector
AP : Sp → A to be AP (s) = argmaxa

(
(π ◦ αP )(s)(a)

)
.

Given an analysis state, the selector picks an action in three
steps. It first converts the state to a feature vector f , then looks
up the f -th entry of π and gets a probability distribution π(f)
over actions, and finally picks an action that has the highest
probability in π(f). The analysis combines this selector and
the TP function in order to define the transfer function
FP (s) = TP (s,AP (s)). Then, it invokes the transfer function
FP to carry out the analysis of P .

In our instantiation of this framework, we defined αP using
manually crafted features. The details of these features will
appear in Section V. For a controller π, however, we found
it automatically using an algorithm. We considered a parame-
terized controller πθ, and formulated an optimization problem
over θ whose objective function encourages the analysis with
πθ to perform well on a given set of benchmark programs,
i.e., when running on those programs under a given resource
constraint, the analysis proves as many queries as possible and
avoids violating the constraint as much as possible. In the rest
of this section, we explain this learning algorithm in detail.

A. Q Function

All the controllers πθ that we consider are defined in terms
of functions Qθ : F×A→ [0, 1]. Intuitively, Qθ(f, a) predicts
how well the analysis would perform if it takes an action a
at an analysis state f . It is an estimate of the RP value of a
program P that the analysis would produce when (i) its starting
analysis state is represented by the feature vector f , (ii) it takes
the action a at this starting point, and (iii) after the action a,
the analysis chooses best actions for maximizing the RP value.
This function corresponds to the Q function in reinforcement
learning. It gives rise to the following controller πθ:

πθ(f)(a) =

{ 1
|A| if Qθ(f, b) = 0 for all b ∈ A

Qθ(f,a)∑
b∈A Qθ(f,b)

otherwise.
(1)B. Learning a Parameter θ

We find θ automatically using a given set of training
programs in Ptr. We set an optimization problem for θ,
which asks for finding θ that induces the best estimate Qθ
for programs in Ptr in a sense. Then, we solve the problem
approximately. A solution is a parameter θ of some Qθ, which
is then turned into the controller πθ by the recipe in (1).

Let us go into the details of our algorithm for learning θ
from Ptr. For a program P and an analysis state s ∈ SP , let
Q∗(P, s, a) be the real number in the interval [0, 1] defined by

Q∗(P, s, a) = sup
{
γn ·RP (last(τ))

∣∣
τ ∈ ΦP starts with (s, a) and has n actions.

}
.



Algorithm 1 Controller Learning
Input: training set Ptr, exploration parameter ε, discount factor γ
Output: controller π

1: for f ∈ F do
2: Set π(f) to a uniform distribution on A
3: end for
4: D ← ∅
5: while timeout do
6: for P ∈ Ptr do
7: 〈s0, a0, . . . , sn, an, sn+1〉 ← DoAnalysis(P, π, ε)

where ai =

{
random a with prob. ε · 0.99i

argmaxa π(fi)(a) otherwise
and fi = αP (si)

8: D′ ← {
〈
〈fj , aj〉, rj

〉
}nj=0 where rj = RP (sn+1) · γn−j

9: D ← D ∪D′
10: end for
11: Q← DoSupervisedLearning(D)
12: Construct π from Q using (1)
13: end while
14: return π

Here γ ∈ (0, 1) is a discount factor that penalizes long tra-
jectories. Intuitively, Q∗(P, s, a) represents the best score that
the analysis of P can achieve by choosing actions carefully
when it starts (or resumes) with taking the action a at the state
s. Also, let SrP be the analysis states that may be reached:

SrP =
{
s ∈ SP

∣∣ s appears in a complete trajectory τ ∈ ΦP
}
.

Our algorithm tries to find Qθ that approximates Q∗ well.
The following optimization problem formalizes what the al-
gorithm aspires to achieve:

θ∗ = argmin
θ

∑
P∈Ptr

(s,a)∈SrP×A

(
Q∗(P, s, a)−Qθ(αP (s), a)

)2

. (2)

Intuitively, the optimization objective says that Qθ is the best
estimate of Q∗ for all reachable analysis states. Unfortunately,
this is an intractable optimization problem. Just evaluating the
objective in the problem is difficult, because it involves Q∗,
which is difficult to find, and the index set SrP × A in the
summation is too large.

Our algorithm solves the problem in (2) approximately
using heuristics from the reinforcement learning community.
It is given in Algorithm 1. On the high level, the algorithm
repeats the following two steps and improves the candidate θ.
First, it runs the analysis on all the programs in the training
set Ptr using a slightly randomized version of the controller
πθ. During this run, the algorithm collects information about
analysis states encountered, actions taken at those states, and
qualities of analysis results measured by the RP functions.
Second, the algorithm uses the collected information to im-
prove θ. It uses the information not just from the analysis run
in the first step, but also from all the prior iterations. Then,
it invokes an off-the-shelf supervised learning algorithm with
this information, and computes a better parameter θ.

Here is a more detailed explanation of our algorithm. It
starts with a randomly-initialized controller π (lines 2). For
each program P in Ptr, the algorithm generates a complete

trajectory by running the static analysis with a slightly-
randomized variant of the controller π (line 7). At each
analysis state s ∈ SP , this variant picks an action a that
maximizes π(αP (s))(a), with probability 1− ε · 0.99i (where
i is the number of iteration of the algorithm). With the
remaining ε · 0.99i probability, the variant draws an action
from the uniform distribution on A. This random-draw part is
introduced here mainly to encourage the analysis to explore
and try new actions. Note that the degree of exploration is
determined by the parameter ε; in our experiment, we use
ε = 0.1. Our variant of π is an instance of the well-known
ε-greedy exploration strategy in reinforcement learning [11].

Every state-action pair in the generated trajectory is stored
in D together with a discounted RP value of the trajectory,
after its state part is abstracted by the feature map αP (line
9). Thus, D ends up with containing 〈x, r〉 where x is a pair
of feature vector and action, and r is a real number between
0 and 1. Note that the set D accumulates such 〈x, r〉 from
all the iterations of the algorithm so far. This accumulation
makes our algorithm more data-efficient. A similar technique
called replay buffer [12] is often used by offline algorithms in
reinforcement learning. We want to point out that {x | 〈x, r〉 ∈
D} can be understood as an approximation of the set SrP ×A
in (2), and the r part of each pair in D can be viewed as an
estimate of the value of Q∗ at (a concretization of) x.

Once our algorithm runs the analysis for all programs in
Ptr, it invokes an off-the-shelf supervised learning algorithm
(line 11) on D. In this invocation, each 〈x, r〉 in D is treated
as a data point x labeled with r. The result of this supervised
learning is then converted to the controller π by our recipe
in (1), and our algorithm repeats what we have just described
with this newly constructed π.

V. APPLICATION TO FLOW-SENSITIVE ANALYSIS

We applied the method to a static analysis that checks
buffer-overrun and null-dereference for C programs, where the
goal is to learn a controller π that adjusts the degree of flow-
sensitivity online and makes the analysis work under a given
constraint on memory usage. We describe an existing partially
flow-sensitive analysis [7] and explain how to learn a controller
by following the recipe described in the previous sections.

The partially flow-sensitive analysis by [7] is defined with
the semantic function GL : D → D, where D = C → S
denotes the abstract domain, i.e., maps from program points
(C) to abstract states (S). An abstract state, s ∈ S = L → V,
maps abstract locations in L to abstract values in V. In
our instance, L and V are the set of program variables and
the lattice of intervals, respectively. Note that the semantic
function is parameterized by a set L ⊆ L of abstract locations,
which controls the degree of flow-sensitivity. The analysis
becomes fully flow-sensitive when L = L, and becomes
completely flow-insensitive when L = ∅. The fixpoint of GL
can be computed by a standard workset algorithm.

Using the partially flow-sensitive analysis, we construct
its controllable counterpart (IP , TP , BP , RP ) in Section III
for each program P . The analysis states in SP are triples



TABLE I: Features for our learning methods.

Feature Description

MemBudget The inverse of memory budget
MemConsum Current memory consumption divided by the total budget
LatticeHeight Current lattice position divided by the lattice height
WorksetSize Current workset size divided by the total workset size

(L,X, Y ) ∈ 2L × D× RT. The first component L of a triple
is a set of locations to be analyzed flow-sensitively, the next
X is an element in the abstract domain D, and the last Y
is a table in RT recording various information about analysis
runtime, such as memory usage and the size of the current
workset. The initial state is IP = (L,⊥D, Y0), where the table
Y0 stores information at the start of the analysis.

We define the set A of actions to be natural numbers be-
tween 0 and 100. Intuitively, an action a instructs the analysis
to treat a% of program variables in L flow-insensitively.

A single execution step of the analysis is modeled by TP :

TP ((L,X, Y ), a) = (reduce(L, a), X tGL(X), Y ′)

First, it computes a subset reduce(L, a) of L, which deter-
mines how much to coarsen the flow-sensitivity. It calculates
the subset by ranking the locations in L usingMP and picking
only the (100−a)% of them from the top of the ranking. Here
MP is a map from abstract locations L to [0, 1], and estimates,
for each l ∈ L, the impact of analyzing l flow-sensitively on
proving queries. We use this map constructed by [7], which
is available in the open-source distribution of [7]. Second, TP
computes the next abstract domain element by joining X and
GL(X) (we use widening if D has an infinite height). Note
that computing GL(X) involves running one fixpoint iteration.
Third, after this iteration is finished, TP collects the current
runtime information about the analysis and stores it in Y ′.

The predicate BP checks whether the analysis terminates or
not. The analysis terminates if the abstract domain element is
a fixpoint of the semantic function (i.e., GL(X) v X) or the
given resource is exhausted. The last RP takes an analysis state
(L,X, Y ) ∈ SP , examines the program P using the current
abstract domain element X , and returns the ratio of proved
queries over the total number of queries. In our experiments,
we used buffer-overrun and null-dereference queries.

To use our framework, we need to define a feature map
αP : SP → F that converts analysis states to feature vectors.
In this instance analysis, we use four features in Table I,
which are all related to the memory usage of the analysis.
Each feature denotes a real number between 0 and 1. The first
MemoryBudget records information about a given memory
bound. It is one divided by the total memory budget given
to the analysis. Here we take the multiplicative inverse for
normalization. The next MemConsum is the ratio of the
current memory usage to the total memory budget expressed
in fraction. The third feature is LatticeHeight, which denotes
the relative height of the current abstract domain element
against the estimated total height of the lattice. For finite
abstract domains, we directly compute both the height of
the element and the total height, and compute their ratio.

TABLE II: Characteristics of benchmark programs for training and
testing. LOC reports lines of code before pre-processing. Var reports
the number of variables in the program (precisely, abstract location).

Training Testing

Program LOC Var Program LOC Var

mp3c-0.29 15K 5K sendmail-8.13.6 129K 26K
less-382 23K 3K redis-4.0.8 148K 63K
make-3.76.1 27K 4K nethack-3.3.0 209K 59K
fpgatools-201212 30K 12K git-2.12.1 238K 69K
exifprobe-2.0.1 40K 13K vim60 226K 58K
screen-4.0.2 41K 10K python-2.3.6 332K 42K
clif-0.93 42K 12K R-3.4.3 376K 80K
urjtag-0.10 63K 14K emacs-26.0.91 503K 129K
gawk-4.1.0 78K 28K
uucp-1.07 80K 15K

For infinite abstract domains, we use approximate heights.
In our experiments with interval analysis, we approximated
the heights of elements in the lattice of intervals using the
method described in [6]. Then, for an abstract-domain element
X ∈ D in this analysis, we summed these estimated heights
of the intervals in X , and used their sum as our approximate
height of X . The last feature is WorksetSize, and denotes the
normalized size of the workset.

The last part needed to instantiate our framework is a
controller π. We can generate it automatically by applying
Algorithm 1 to a training set Ptr of programs.

VI. EXPERIMENTAL EVALUATION

We designed and carried out experiments that aim at an-
swering the following research questions:
• Analysis Precision: How precise is our analysis that

coarsens its program abstraction online with a learned
controller compared with the existing offline approach [7]?

• Memory Utilization: How well do learned controllers uti-
lize given memory budgets?

• Learning Algorithm: How effective is our algorithm for
learning a controller? How does the controller behave?

• Runtime Overhead: How much runtime overhead is in-
curred by coarsening program abstraction during analysis?
We implemented our technique on top of SPARROW,

an open-source state-of-the-art static analyzer for C pro-
grams [13] implemented in OCaml. The analyzer is (partially)
context-sensitive and field-sensitive, and tracks both numeric
and pointer values using the interval domain and allocation-
site-based heap abstraction. We used the implementations of
sparse analysis [14], partially flow-sensitive analysis [7], and
a pre-trained model M for ranking locations [7], which are
available in the open-source distribution of SPARROW.

When measuring analysis precision, we counted the num-
bers of buffer-overrun alarms and null-dereference alarms.
Instead of invoking a controller and coarsening abstraction
in every analysis step, we triggered abstraction coarsening
only when the OCaml runtime allocates memory in the major
heap [15]. The decision tree algorithm in the scikit-learn
package [16] was our choice of the supervised learner in
Algorithm 1. We used the default hyper parameters of the
decision tree library. The exploration rate ε and the discount



TABLE III: Effectiveness of our partially flow-sensitive analysis with online abstraction coarsening. Baseline reports the performance
of the baseline analysis with k = 10. Time reports the execution time of each analysis in minutes. BO and ND report the number of
buffer-overrun alarms and that of null-dereference alarms, respectively. Mem reports memory consumption in gigabytes. The numbers in
parentheses represent memory utilization (memory consumption divided by budget). Dashes (-) mean that the analysis runs out of memory.

Baseline (Offline) Online (64GB) Online (128GB)

Program Time BO ND Mem Time BO ND Mem Time BO ND Mem

sendmail-8.13.6 19 1,796 890 4.3 960 1,754 749 38 (60%) 623 1,743 703 44 (34%)
redis-4.0.8 43 977 728 14.8 487 953 720 35 (54%) 948 791 510 50 (39%)
nethack-3.3.0 200 1,154 237 52.3 855 1,141 237 58 (91%) 684 1,140 236 81 (63%)
git-2.12.1 62 863 879 10.8 1,923 859 873 53 (83%) 2,539 798 807 58 (45%)
vim60 - - - - 780 950 812 63 (99%) 864 949 801 111 (87%)
python-2.3.6 456 185 264 51.9 331 197 274 48 (75%) 1,056 185 264 80 (63%)
R-3.4.3 - - - - 257 1,605 1,510 53 (83%) 534 1,591 1,483 93 (73%)
emacs-26.0.91 - - - - 515 456 344 57 (89%) 1,933 453 341 104 (81%)

factor γ in Algorithm 1 were set to 0.1 and 0.7. We learned
the controller by running the algorithm for 100 iterations.

We used the 18 programs in Table II. The ten small
programs (< 100KLOC) were used for training a controller
π, and the remaining eight large programs (> 100KLOC) for
evaluating the learned controller. Since the training programs
are small, even the flow-sensitive analysis of them does not
exhaust 64GB and 128GB memory budgets. Thus, in the
training phase, we set the memory budget for each program
based on information that we collected by running the par-
tially flow-sensitive analysis [7] in the SPARROW distribution,
whose degree of flow-sensitivity had to be set manually. More
concretely, for each training program P ∈ Ptr, we first ran
SPARROW’s partial flow-sensitive analysis four times with
different degrees of flow-sensitivity: we made it track the 60,
70, 80 and 90% of variables flow-sensitively in those runs. The
peak memory consumption of these analysis runs was then
used as our memory budget for the program in the training
phase. In the testing phase, we set the memory budget to
64GB or 128GB, and measured the performance of the learned
controller. Note that we did not use SPARROW’s partial flow-
sensitive analysis at all here.

Using the programs in our testing set, we compared our
technique against the partially flow-sensitive analysis [7] in
the SPARROW distribution. As we already mentioned, this
baseline analysis selects program abstraction offline, and the
percentage k of variables to be treated flow-sensitively should
be set manually before the analysis begins. We used k = 10%
as in the original work [7]. For detailed comparison, we also
used different k values with 0 ≤ k < 10.

A. Analysis Precision

We experimentally compared the precision of our analysis
with online abstraction coarsening, with that of the baseline
analysis with offline abstraction coarsening. We measured the
precision by counting the number of buffer-overrun alarms and
that of null-dereference alarms (lower is better).

The experimental results appear in Table III, with further
details shown in Figure 1. For redis-4.0.8, our analysis with
online abstraction coarsening reported 953 and 791 buffer-
overrun alarms under 64GB and 128GB memory budgets,
respectively. Meanwhile, the baseline analysis reported 977

alarms. For null-dereference alarms, our analysis reported 720
and 510 under 64GB and 128GB memory budgets, respec-
tively, while the baseline reported 728 alarms. The baseline
analysis with a higher k value may be able to report fewer
alarms but it is difficult to manually pick the best k for each
memory budget. For example, when analyzing vim60, even
the analysis with k > 3% ran out of memory. Even worse,
memory consumption is not proportional to program size;
analyzing larger programs such as python-2.3.6 and R-3.4.3
may consume less memory than analyzing smaller ones. On
the other hand, by coarsening program abstraction online under
the guidance of the learned controller, our analysis was able to
automatically meet the given memory budget and successfully
analyzed those programs (vim60, R-3.4.3, and emacs-26.0.91)
that made the baseline analysis run out of memory.

B. Memory Utilization

We now report what we found about the memory utilization
of the learned controller. These findings are based on our mea-
surements on the peak memory consumption of our analysis
and that of the baseline analysis.

The results of our experiments are given in Figure 2. The
baseline analysis with ten different flow-sensitivity settings
(i.e., 0, 1, . . . , 10 % of variables) could not utilize the memory
budget effectively. It abstracted flow-sensitivity too much
when it started and under-utilized a given memory budget.
Or it abstracted flow-sensitivity too little, and exceeded the
budget. Meanwhile, for every test program, our analysis met a
given budget and never ran out of memory. We want to make
two further important points. First, when our analysis was
applied to sendmail-8.13.6, redis-4.0.8 and git-2.12.1 under
the 128GB budget, it used less than 64GB, but this does not
mean that our analysis under-utilized its budget 128GB. In all
of these cases, the analysis reported as few alarms as the one
run under no abstraction coarsening at all. Second, the learned
controller guided the online coarsening of our analysis such
that the given memory budget was never exceeded but well
utilized. When run on vim60 under 64GB and 128GB budgets,
our analysis used 63GB (99%) and 111GB (87%), respectively.
The experiments on other larger programs showed the similar
high utilization of a given memory budget. For the programs
R-3.4.3 and emacs-26.0.91, our analysis utilized 53GB (83%)
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Fig. 1: Precision of our partially flow-sensitive analysis with online abstraction coarsening. The x-axis represents the percentage of variables
for flow-sensitivity. The y-axis reports the number of alarms. The plain line shows the number of alarms by the baseline analysis. The line
with and represent the numbers of alarms by our analysis under 64GB and 128GB memory budgets, respectively
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Fig. 2: Memory utilization of our partially flow-sensitive analysis with online abstraction coarsening. The x-axis is the % of variables for
flow-sensitivity. The y-axis reports the peak memory consumption.

and 57GB (89%) when run under the 64GB budget, and 92GB
(73%) and 104 (81%) when run under the 128GB budget.

C. Learning Algorithm

Next we report on our evaluation of Algorithm 1, which
learns a controller from given training programs.

We compared our learning algorithm with the naive algo-
rithm based on random sampling. The latter works as follows.
It fixes a controller that chooses the percentage of variables to
coarsen from the uniform distribution on {0, 1, . . . , 100}. The
algorithm then instantiates our analysis with this controller,
analyzes all programs in the training set multiple times, and
collects the trajectories of these runs. The collected trajectories
are converted to a labeled dataset by the methodology de-
scribed at the end of Section IV-B. Finally, the naive learning
algorithm calls an off-the-shelf supervised learner with the
dataset, and builds a controller from the output of the learner.

Figure 3 shows the learning curve of our algorithm for
the first 100 iterations. It reports the numbers of alarms in
a normalized form. The number of alarms is bounded. The
upper bound is the number of alarms by the flow-insensitive
analysis. The lower bound is the total number of alarms by
the partially flow-sensitive analysis whose degree is manually
set to 60, 70, 80, or 90 as described in Section VI. For
each number of alarms, our normalization subtracts this lower
bound from it, and divides the result by the difference between

the upper bound and the lower bound. After this normalization,
all the numbers fall in the range [0, 1]. The figure also shows
how many alarms are raised by the analysis with a random
controller used in the naive learning algorithm.

According to Figure 3, our learning algorithm improves
a controller continuously with some noise (due to ε-random
exploration), and eventually ends up with a controller that
removes up to the 94% of all the removable alarms. The
graph in the figure shows a sudden change in the learning
curve at iteration 30. Here is what happens. At nearly every
iteration until the 29th, our algorithm changes the controller
such that the controller coarsens fewer variables and leads to
the decrease in the number of alarms. But at the 30th iteration,
the algorithm finds that, under the current controller, most of
the analysis runs with training programs exhaust memory. This
failure produces trajectories with very low scores, and makes
the off-the-shelf supervised learning algorithm fix the issues
with the controller. After around 70 iterations, the algorithm
gets stabilized; the fluctuations afterwards are mainly due to
the ε-random exploration. The figure also shows the score
(52%) of the naive learning algorithm with the random con-
troller. Furthermore, the random controller does not perform
well in the test programs. Among the eight test programs, the
analyzer ran out of memory for four under the 64GB budget,
and for five under the 128GB budget. This indicates that the
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random controller used by the naive algorithm does not try
promising or informative trajectories often, a situation different
from the one experienced by our learning algorithm.

Finally, we found that the learned policy is interpretable and
its reasoning can be read off as reasonable human-readable
rules. This is one of the benefits of using the decision tree
algorithm. For example, the learned policy uses the following
rules discovered by the algorithm:
• If the budget is enough (MemBudget ≤ 1.0−3), the memory

consumption is low (MemConsum ≤ 0.52), and the workset
is small (WorksetSize ≤ 0.06), coarsening a large percent-
age of variables (≤ 58%) would result in more alarms.

• Even with a small budget MemBudget ≤ 1.5−3, if the lattice
is high (LatticeHeight > 0.37) and the workset is small
(WorksetSize ≤ 0.06), coarsening a small percentage of
variables (≤ 3%) would result in fewer alarms.

D. Runtime Overhead

We measured the runtime overhead of our approach. The
overhead includes extracting features from the current analysis
states, finding the most promising action using the controller,
and coarsening flow-sensitivity. Overall, the abstraction coars-
ening process took up to 5% of the running time for all
test programs. However, applying abstraction coarsening more
aggressively did not always reduce the running time. For
example, analyzing sendmail-8.13.6 under the 64GB memory
budget took longer than the same analysis with the 128GB
memory budget, even though the former is less precise. Such
circumstances are not uncommon in program analysis, because
a less precise analysis may explore more spurious behaviors
of a target program than the precise version.

E. Limitations and Threats to Validity

Although our approach of developing a program analysis
with online abstraction coarsening and learning its controller
from a codebase can be applied to a wide range of program
analysis problems in principle, we admit that in practice, such
an application commonly requires further nontrivial engineer-
ing. What we have shown in our experiments is limited to a
particular analysis problem. We list the specific aspects of this
problem that may be absent in different analysis problems.

• Type of Resource: Our instance analysis and controller
are only concerned with memory consumption. Hence, our
experimental results and findings might not represent what
would happen for constraints on different analysis resources
such as time and hard disk usage.

• Type of Abstraction: Our instance analysis only controls
flow-sensitivity. If it is asked to control other abstraction
techniques, such as context-sensitivity and relational analy-
sis, in addition, then we might have to alter our approach,
especially, our algorithm for learning a controller, in order
to get meaningful experimental results.

• Type of Features: To abstract analysis states, we have used
a set of features carefully designed for our constraint on
memory consumption. A new set of features will have to be
designed for other types of analysis resources.

VII. RELATED WORK

Our work is related or influenced by several lines of prior
research in program analysis and machine learning.

A. Automatic Abstraction Finding

One high-level idea used by our work is to adapt pro-
gram abstraction automatically to a given analysis task. There
are several realizations of this idea, which let us automati-
cally find good program abstraction that balances the preci-
sion and the cost of analysis. Well-known examples include
counterexample-guided abstraction refinement (CEGAR) [17],
[18], parametric program analysis based on pre-analysis [19],
[20] or dynamic analysis [21], [22], and program analysis
tuned by machine learning algorithms [2], [7], [23]–[26].

Although these techniques have been successful, they are
not designed with resource constraints in mind and cannot
cope with them well. For example, the recent techniques for
controlling flow- and context-sensitivity [2], [7], [19], [20],
[24] would abort, without producing any results, if there were
no more memory available. Our aim is to address this resource-
constraint problem in the context of automatic abstraction find-
ing or adjustment. We equip a static analysis with the ability
for coarsening abstraction online, and let a controller direct
this coarsening, while learning a good controller automatically
from a set of benchmark programs. All of these make our
analysis regard resource constraints on a par with analysis
precision and cost when it adapts program abstraction.

B. Resource-bounded Program Analysis

There have been a few studies on physical resources used
by a program analyzer [5], [6]. The technique by [6] estimates
the analysis time, one form of physical resource, before the
analysis begins. However, it does not attempt to control the
analysis so that it meets a constraint on resources, while such
a control is the focus of our work. The bounded abstract
interpretation [5] provides one way of coping with a resource
constraint. It prepares the analysis for the case that all available
resources are gone, by making the analysis store intermediate
results. The analysis may resume from those stored results
when more resources become available. Note that our goal is



different from that of this bounded abstract interpretation; we
want to prevent this resource exhaustion from happening.

C. Data-driven Program Analysis

Our work is data-driven in that it learns a controller au-
tomatically from a set of benchmark programs. Such a data-
driven approach has been pursued actively by program analysis
researchers, to learn program-analysis heuristics [2], [7], [23],
[24], [26], [27], also to predict program properties [28], [29],
and sometimes to synthesize abstract semantics [30] as well.

Our work falls into the first heuristic-learning category,
but addresses a more difficult learning problem than those
considered in the existing work. Most of those works are
concerned with analysis heuristics that are used once only
at the beginning of the analysis. Thus, it is feasible to solve
optimization problems related to learning directly by Bayesian
optimization [7], boolean formula learning [7], [24], decision
tree learning [2], and one-class SVM [23]. However in our
case, we have to learn a controller that will make a series
of decisions and receive a feedback for not a single but a
group of decisions. The search space for learning in our case
is much larger than that in the existing work. The situation is
similar to the difference between supervised and reinforcement
learning in the difficulties of problems tackled by them. In fact,
most of the techniques used in the existing work come from
supervised learning, while ours comes from reinforcement
learning. Grigore et al.’s work in [27] is one of the few
exceptions, where they presented a method to learn a model
that guides abstraction refinement during analysis. However,
their learning algorithm is restricted to Datalog, and so it
cannot be applied to general non-Datalog program analyses.

D. Reinforcement Learning and Transfer Learning

Our approach can be understood as a variant of the batch-
mode reinforcement learning algorithm [8]–[10]. A controller
in our work corresponds to a so called policy in reinforcement
learning [11], [31]. Our algorithm for learning a controller uses
reinforcement-learning techniques for learning a good policy.
The idea of repeatedly executing a policy and improving it
based on execution trajectories [11], that of accumulating all
the trajectories and using them for learning [8]–[10], [12],
and the idea of approximating the ideal Q function and
defining a policy based on the approximation, all of these are
common techniques from reinforcement learning. However,
our approach attempts to learn a controller from a collection of
small programs, and to apply the controller to different large
programs. Typically, the objectives of reinforcement learning
algorithms are to learn a good policy for a given problem, not
to learn a policy from one problem that generalizes well to
other similar but different problems.

The first point that we have just made is closely related to
what so called transfer learning attempts to achieve. Trans-
fer learning aims at developing techniques for automatically
adapting a learned classifier or a model from one dataset or
a problem domain to a different dataset or a new problem
domain. A wide variety of techniques have been developed in

the contexts of text classification [32]–[34], natural language
processing [35], [36], and software defect prediction [37], just
to name a few. Our work can be understood as an addition
to this line of research on transfer learning. In our case, we
encourage our controller-learning algorithm to come up with a
transferable controller by making it use a program-independent
carefully-designed common feature space.

Recently, Singh et al. [26] used reinforcement learning to
select a series of cost-effective abstract transformers during
polyhedra analysis. We tackle a different problem of ana-
lyzing programs under resource constraints, which requires
different instantiation and adaption of reinforcement learning
techniques, such as our on-policy controller-learning algorithm
instead of (approximate) Q-learning algorithm used by them.

VIII. CONCLUSION

We have presented a methodology for building a static
program analysis that should work well under a resource
constraint, such as a limit on peak memory consumption. Our
methodology suggests to design an analysis that continually
adjusts its program abstraction online (i.e. during analysis),
in such a way to meet a given resource constraint and also
to prove as many queries as possible. The key component
behind this online adjustment is a controller that takes runtime
information about the current status of the analysis, such as
memory usage and workset size, and instructs the analysis
about how it has to change program abstraction. The con-
troller itself can be learned automatically from a collection
of programs using our algorithm presented in the paper. We
illustrated our methodology with a partially flow-sensitive
analysis, a constraint on peak memory consumption, and two
types of program queries, and through experiments with this
instantiation, we showed the promise of our methodology.

Let us finish this paper with one rather speculative remark.
A standard formalism for static program analysis does not
pay enough attention on how the analysis uses its physical
resources, such as memory and time. Managing such resources
well is typically regarded as a low-level issue. We think that
it is worth revisiting this practice, and we hope that our work
encouraged a reader to do so. If we extend the scope of high-
level analysis specification, include resource management as
its part, and allow the part to interact with the rest of the
analysis closely, then we may be able to open up new ways of
improving program analysis systematically with formal tools.
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