
Translation Validation for JIT Compiler
in the V8 JavaScript Engine

Seungwan Kwon
seungwan.kwon@kaist.ac.kr

KAIST
Daejeon, Korea

Jaeseong Kwon
jaeseong.kwon@kaist.ac.kr

KAIST
Daejeon, Korea

Wooseok Kang
kangwoosukeq@kaist.ac.kr

KAIST
Daejeon, Korea

Juneyoung Lee∗
lebjuney@amazon.com

Amazon
Austin, Texas, USA

Kihong Heo
kihong.heo@kaist.ac.kr

KAIST
Daejeon, Korea

ABSTRACT

We present TurboTV, a translation validator for the JavaScript (JS)
just-in-time (JIT) compiler of V8. While JS engines have become a
crucial part of various software systems, their emerging adaption
of JIT compilation makes it increasingly challenging to ensure their
correctness. We tackle this problem with an SMT-based translation
validation (TV) that checks whether a specific compilation is seman-
tically correct. We formally define the semantics of IR of TurboFan
(JIT compiler of V8) as SMT encoding. For efficient validation, we
design a staged strategy for JS JIT compilers. This allows us to
decompose the whole correctness checking into simpler ones. Fur-
thermore, we utilize fuzzing to achieve practical TV. We generate
a large number of JS functions using a fuzzer to trigger various
optimization passes of TurboFan and validate their compilation
using TurboTV. Lastly, we demonstrate that TurboTV can also be
used for cross-language TV. We show that TurboTV can validate
the translation chain from LLVM IR to TurboFan IR, collaborating
with an off-the-shelf TV tool for LLVM. We evaluated TurboTV
on various sets of JS and LLVM programs. TurboTV effectively
validated a large number of compilations of TurboFan with a low
false positive rate and discovered a new miscompilation in LLVM.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation; Just-in-time compilers; Semantics; • Theory of com-

putation → Logic and verification.

KEYWORDS

Translation Validation, Javascript Engine, JIT Compiler, IR, Seman-
tics, Fuzzing
ACM Reference Format:

Seungwan Kwon, Jaeseong Kwon, Wooseok Kang, Juneyoung Lee, and Ki-
hong Heo. 2024. Translation Validation for JIT Compiler in the V8 JavaScript
∗He contributed to this work before joining Amazon.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639189

Engine. In 2024 IEEE/ACM 46th International Conference on Software Engi-

neering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3597503.3639189

1 INTRODUCTION

The correctness of JavaScript (JS) engines (e.g., V8 in Chromium [19])
is one of the most critical issues for the reliability of a wide range of
software platforms [25, 27–29, 35]. Recently, the emerging adaption
of Just-in-Time (JIT) compilers in modern JS engines has made the
problem even more challenging. Recently reported bugs demon-
strate that the complex nature of JIT compilation often leads to
critical miscompilations that can be exploited as a wide range of
security vulnerabilities [7–13].

Existing approaches to checking the correctness of the JIT com-
pilers fall into two extremes. One dominant direction is to develop
fuzzers that randomly generate JS code and test the engines. They
check whether the engines produce crashes [4, 20, 30, 32, 36] or
cross-check the outputs of a JS program with and without JIT com-
pilation [4, 36]. While this approach has been widely used in prac-
tice, it is not applicable to find latent bugs not observable during
the executions of compiled programs. (e.g., crashes or return val-
ues). The other direction is to develop a verified JIT compiler from
scratch [2, 5]. While this approach can guarantee the correctness
of (a part of) the compiler, it incurs substantial effort to rewrite the
whole compiler which involves complicated optimizations.

In this paper, we present an SMT-based translation validation as a
“sweet spot” between the two extremes. Translation validation (TV)
checks whether a specific compilation from the source program to
the target program is semantically correct [31]. Since we are sym-
bolically checking the semantic preservation using SMT solvers,
our technique can discover latent miscompilations during interme-
diate optimization steps and consider all possible input values of
compiled functions. Also, the checking solely relies on the seman-
tics of the source and the target programs and does not require the
implementation details of the compiler. This enables us to easily
check the correctness even though the compiler is implemented in
a complex language like C++ and is updated frequently.

For efficient TV for JS, we propose a novel design of a staged
strategy. Conventional TV for languages with undefined behaviors
(UB) checks a refinement relation between a source and a target
program [1, 23, 24]. In this work, we carefully rely on the absence
of UB in JS based on the ECMAScript specification [18]. This means

https://orcid.org/0009-0001-7774-2147
https://orcid.org/0009-0001-1927-5077
https://orcid.org/0000-0002-9318-1511
https://orcid.org/0000-0002-8152-9330
https://orcid.org/0000-0003-2671-0142
https://doi.org/10.1145/3597503.3639189
https://doi.org/10.1145/3597503.3639189


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Seungwan Kwon, Jaeseong Kwon, Wooseok Kang, Juneyoung Lee, and Kihong Heo

that the intermediate programs generated during the JIT compila-
tion do not have UB either if they are correctly compiled. Therefore,
we can decompose the whole validation step into two stages: check-
ing the UB of each source and target program and checking the
semantic equivalence between the two programs if no UB is found.
This strategy enables us to derive simpler SMT queries than the
refinement query by the conventional approach.

Furthermore, we leverage fuzzing to achieve practical TV. Since
JIT compilation happens at runtime, the overhead of TV degrades
the performance of the applications. To address this challenge, we
use a fuzzer to generate a large corpus of JS functions that trigger
various compiler optimization passes and check the correctness of
the JIT compilation for the corpus using TV. This combination en-
ables us to discover latent bugs that are not observable as outcomes.
We demonstrate that the cost of TV is amortized to a small fraction
of the total running time as the fuzzer runs long enough. We also
utilize the fuzzer to test our TV tool itself. We generate a pair of JS
functions that return different values given the same input. Then,
we check whether our tool can capture the semantic difference.

Finally, we extend our approach to cross-language TV. Combin-
ing our tool with an existing TV tool for LLVM IR, Alive2 [24], we
check the correctness of the translation from LLVM IR to Turbo-
Fan IR. We first translate an LLVM IR program to a WebAssembly
(Wasm) bytecode using the LLVM compiler. Then, we translate the
Wasm bytecode to TurboFan IR using the TurboFan compiler.
Finally, we check the correctness of the compilation from the orig-
inal LLVM IR program to the translated TurboFan IR program.
This naturally enables us to check the correctness of the Wasm
backend of LLVM and the Wasm frontend of TurboFan. Since the
memory models of LLVM and TurboFan are different, we focus on
functions whose parameters and return values are integers or floats.
Nevertheless, we found a miscompilation in the Wasm backend of
LLVM that cannot be found by the existing TV for LLVM IR.

We instantiated these ideas in a tool TurboTV, a TV for Turbo-
Fan (JIT compiler of V8). We evaluated the effectiveness of Tur-
boTV on a large number of JS and LLVM benchmarks, including
reported bugs, regression tests, and generated corpus. The results
demonstrate that TurboTV is robust enough to discover all the
bugs from the benchmarks with a low false positive ratio.

In summary, this paper makes the following contributions:

• We present TurboTV, the first SMT-based TV for TurboFan. We
formally define the semantics of TurboFan IR as SMT encoding.

• We present a two-stage TV strategy: UB checking and semantic
equivalence checking. This decomposition enables us to derive
simpler SMT queries than conventional refinement queries.

• We extend TurboTV to cross-language TV from LLVM to Tur-
boFan using Wasm as an intermediate language. We found a
miscompilation in the Wasm backend of LLVM that is not found
by the existing TV for LLVM IR.

• We evaluate and demonstrate the effectiveness of TurboTV with
a large set of JS and LLVM programs. Our tool and data are
available at https://doi.org/10.5281/zenodo.10453785 and https:
//github.com/prosyslab/turbo-tv-artifact.

Figure 1: Overview of TurboTV. SoN𝑖 is a graph represen-

tation of IR of TurboFan (Sec. 4.1) after 𝑖’th reduction. EQ

Checker and UB Checker are explained in Sec. 2.3.2.

2 OVERVIEW

2.1 The Sea-of-Nodes IR

In TurboFan, a function is represented in a graph-based IR called
Sea-of-Nodes (SoN) [16]. SoN is a directed graph where each node
represents an operation or a constant, and each edge represents
a data or control dependency. Notice that SoN does not explicitly
specify execution orders. That is, two nodes can be executed in
arbitrary order if there are no edges in between. After all optimiza-
tions are applied, TurboFan generates a conventional control-flow
graph (CFG) from SoN by explicitly specifying the execution order.

2.2 Translation Validation (TV)

We briefly describe the compiler correctness and TV. To validate a
compiler transformation, one needs to check whether the semantics
of the source program is preserved in the target program. Seman-
tic preservation is defined as a refinement relation between the
source and target programs’ behavior [31]. Given a pair of behavior
(𝐵1, 𝐵2), 𝐵2 refines 𝐵1 if (1) 𝐵1 and 𝐵2 are well-defined and equal1,
or (2) 𝐵1 is not well-defined; in other words, it is undefined behavior
(UB). UB is the behavior of a program that does not satisfy the type
checker or language standard.

A validator takes a pair of programs – the source program and the
target program – and checks whether the refinement relation holds
between the behavior of the source and target program for every
input. For validation of intraprocedural compiler transformation,
the functions in the source and target programs are aligned by
their names, and each function pair with the same function name
is validated. A validator symbolically encodes the final states of the
two functions for a function input. In this paper, we will call the
symbolic final state the semantic of the function.

2.3 Our Approach: TurboTV

2.3.1 Goal of TurboTV. The goal of TurboTV is to validate in-
traprocedural optimizations of loop-free functions. Given a JS func-
tion, TurboTV validates all the optimization steps (called reduc-

tions) during the JIT compilation. It works with TurboFan, which
is specially instrumented to emit the IRs of the source and target
1Note that this definition of refinement does not consider nondeterminism for brevity.
If nondeterminism is considered, this equality must be expanded to the subset relation
of two behavior sets. Since nondeterminism is rare in JS, we only consider deterministic
behavior (see Sec. 5.3).

https://doi.org/10.5281/zenodo.10453785
https://github.com/prosyslab/turbo-tv-artifact
https://github.com/prosyslab/turbo-tv-artifact


Translation Validation for JIT Compiler in the V8 JavaScript Engine ICSE ’24, April 14–20, 2024, Lisbon, Portugal

functions for each optimization step. Then, TurboTV symbolically
executes the functions and emits verification conditions that encode
compiler correctness. Finally, the SMT solver checks the verifica-
tion condition. The role of the solver is to find an input to the
functions that breaks the condition for compiler correctness. The
overall architecture of TurboTV is shown in Fig. 1.

Since compilation speed is important for JIT compilers, running
TurboTV for every compiling programmight not be the best option.
Instead, TurboTV can be used as a way of testing TurboFan with
wider test coverage compared to traditional random testing. In
Sec. 7 and 8, we show that TurboTV can be effectively combined
with fuzzing at a small cost. Specifically, we demonstrate that the
cost of TV is amortized to a small fraction of the running time when
the fuzzer’s running time becomes long enough.

2.3.2 EQ Checker and UB Checker. According to the ECMAScript
specification [18], JS programs do not have UBs as in C/C++2. This
fact enables us to decompose the refinement checking into two
stages: EQ (equality) check and UB check. We name this a two-
stage TV strategy.

The underlying principle is as follows. Let’s assume that 𝑓JS (𝑥)
and 𝑓IR (𝑥) are a JS function and its IR, respectively. We assume that
the translation only looks into 𝑓JS (𝑥) (i.e., intraprocedural). Since
(1) 𝑓JS (𝑥) does not raise UB for any input 𝑥 , and (2) the compiler
must not introduce UB according to the definition of refinement,
𝑓IR also does not raise UB for any IR value 𝑥 that represents some
valid value in JS.

Now, let us assume that 𝑓IR (𝑥) is optimized to 𝑓 ′IR (𝑥) via an
intraprocedural optimization. If the optimization was correct, 𝑓 ′IR
again must not have UB for any valid input 𝑥 . After proving that
𝑓 ′IR has well-defined behavior for any 𝑥 , showing the correctness of
optimization is finally reduced to simply showing the equivalence
of the behavior of 𝑓IR and 𝑓 ′IR for any valid 𝑥 . Note that the two
checks — the existence of UB and behavior equivalence — can
be naturally done via two independent checkers. Therefore, we
split the validation into invocations of two different checkers: UB
Checker and EQ Checker.

The UB Checker inspects whether a given IR function does not
raise UB for any valid input. In our formal semantics of TurboFan
IR, erroneous behavior such as out-of-bounds access is regarded as
UB (see Sec. 3). The UB Checker of TurboTV detects compiler bugs
introducing such behavior. The EQ Checker takes two TurboFan
functions that are before and after a reduction (optimization step)
and proves that they are semantically equivalent.

The separation of UB and EQ Checkers has two benefits. First,
the split SMT queries are shorter than the original refinement query,
providing more opportunities for the SMT solver to answer within
a given resource. One refinement query is split into two queries for
UB Checkers and one query for EQ Checker. The two queries for UB
Checkers are the conditions of UB of source and target functions. If
consecutive compiler transformations are validated, the results of
the UB Checker for the target function can be reused for validation
of the next transformation.

Second, it effectively detects miscompilation bugs introducing
UB. Consider a TurboFan function 𝑓IR that raises UB for some valid

2The specification does not specify UB. Notice that implementation-defined behavior
in ECMAScript is well-constrained by the specification and different from UB.

JS value 𝑥0 as an input. The fact that 𝑓IR (𝑥0) raises UB implies that
there is a miscompilation during a series of compiler transforma-
tions from the source JS program 𝑓JS to 𝑓IR because JS does not have
UB. In theory, validating every transformation with the conven-
tional refinement relation will detect where the UB was introduced.
However, the bug can be missed if the refinement checking fails due
to some practice limitations, such as the solver’s timeout. Instead, in
two-stage TV, UB Checker can detect the bug by directly inspecting
𝑓IR (𝑥) only. We show that TurboTV does not miss bugs in Sec. 8.

2.4 Validation Scope of TurboTV

We consider the behavior after deoptimization out of the scope of
this paper. JIT compilers optimize the code based on specific as-
sumptions about the input. Once the assumptions are invalidated
during the execution, deoptimization is triggered, and the function
is executed by the interpreter. Since our goal is to check the cor-
rectness of the JIT compiler, we prove the semantic equivalence
between the source and target functions for all inputs that do not
invoke deoptimization.

Since our scope is validating intraprocedural optimizations, Tur-
boTV may falsely report that miscompilation happened after in-
terprocedural optimizations. Furthermore, a single existence of
interprocedural optimization may cause the UB Checker to raise
false alarms for all later optimization because it may introduce
assumptions that rely on global invariants. However, we experi-
mentally show that TurboTV has very low false alarms in practice,
as other SMT-based validators do.

TurboTV only supports loop-free functions. Modeling the se-
mantics of a function, including possibly unbounded loops, and
validating their transformations is known to be a hard problem. We
leave this extension as future work.

3 MOTIVATING EXAMPLES

We illustrate our approach with two real bugs of V8. We will first
explain the validation process of the EQ Checker in Sec. 3.1, then
describe the details of the UB Checker in the rest of the section.

3.1 A Miscompilation Bug: Issue 1199345

3.1.1 Bug Description. Fig. 2(a) shows a JS code that triggered a
miscompilation due to the incorrect handling of signed zero (−0) in
JS [10]. Function foo negates the value of x if argument a is true and
returns x + (x - 0). If a is true, the function returns 0+ (0−0) = 0.
Otherwise, the function returns the result of (−0) + ((−0) −0) = −0
according to the ECMAScript specification [18].

TurboFan optimizes foo using the calling context described
between lines 8 and 10. The macros at lines 8 and 10 force the
compiler to optimize the function for the next call at line 11. After
the first call to foo (line 9), TurboFan speculatively optimizes the
function based on the input value (true).

We will explain how TurboFan miscompiled foo to return 0
even if a was false by presenting its TurboFan IRs before and
after a problematic compiler optimization. Fig. 2(b) depicts an IR of
the function before the optimization is run. SpeculativeSafeIn-
tegerAdd and SpeculativeSafeIntegerSubtract compute the
addition and subtraction of two floating-point operands if both are
safe integers, meaning that it is in [−253 + 1, 253 − 1]. Otherwise,



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Seungwan Kwon, Jaeseong Kwon, Wooseok Kang, Juneyoung Lee, and Kihong Heo

function foo(a) {

var x = -0;

if (a) {

x = 0;

}

return x + (x - 0);

}

%PrepareFunctionForOptimization(foo);

foo(true);

%OptimizeFunctionOnNextCall(foo);

foo(false);

// 0 (wrong)

// -0 (expected)

(a) JavaScript code. (b) SoN before the optimization. (c) SoN after the optimization.

Figure 2: Issue 1199345 of Chromium [10].

they trigger deoptimization and TurboFan fallbacks to running
V8’s JS interpreter. Since 0 and −0 are considered safe integers,
the function computes a correct output without deoptimization,
regardless of the input.

Fig. 2(c) depicts the IR after the function is optimized to use
Int32Add. This function is faster than the original code since Int32Add
uses the simple 32-bit integer addition, whereas SpeculativeSafeIn-
tegerAdd internally uses floating-point addition. However, it is in-
correct because CheckedFloat64ToInt32 does not trigger a deop-
timization when its operand is −0. It deoptimizes when the operand
is not representable in a 32-bit integer without loss, but TurboFan
does not consider the conversion of −0 to 0 as a lossy. Therefore,
−0 is cased to 0 if a is false, and eventually, the function returns 0.
A correct compilation is to use CheckedFloat64ToInt32−0 which
has a special mode CheckForMinusZero to trigger a deoptimization
when the operand is −0.

3.1.2 Validation via SMT Solving. TurboTV validates the miscom-
pilation of TurboFan via SMT solving. The main idea is to symbol-
ically encode the semantics of each IR function and check whether
the source’s semantics is preserved after the optimization. Let 𝑟𝑖
denote the result value of the instruction at node 𝑖 and 𝑑𝑖 indicate
whether a deoptimization has been triggered until node 𝑖 before the
optimization. Similarly, we denote the result value and deoptimiza-
tion flag at node 𝑖 after the optimization by 𝑟 ′

𝑖
and 𝑑′

𝑖
, respectively.

For example, the semantics of the red nodes in Fig. 2 are represented
as follows:

Node 6 in Fig. 2(b) The result 𝑟6 is computed as the addition of
the results 𝑟3 and 𝑟5 from the previous instructions: 𝑟6 = 𝑟3 +𝑟5. A
deoptimization is triggered if either 𝑟3, 𝑟5 or 𝑟6 is not a safe integer:
𝑑6 = 𝑑3 ∨ 𝑑5 ∨ ¬(IsSafeInt(𝑟3) ∧ IsSafeInt(𝑟5) ∧ IsSafeInt(𝑟6)).

Node 7 in Fig. 2(b) The return instruction just outputs the incom-
ing value and the deoptimization flag: 𝑟7 = 𝑟6 and 𝑑7 = 𝑑6.

Node 8 in Fig. 2(c) This operator casts the operand into an Int32
value: 𝑟 ′8 = ToInt32(𝑟 ′3). A deoptimization is triggered when the
type cast is lossy: 𝑑′8 = 𝑑′3 ∨ (ToFloat(𝑟 ′8) ≠ 𝑟 ′3). Note that the
conversion from −0 to 0 is lossless.

Node 11 in Fig. 2(c) The result is addition of the operands 𝑟 ′8 and
𝑟 ′10 and the deoptimization flag is set if any of the previous instruc-
tions triggered deoptimizations: 𝑟 ′11 = 𝑟 ′8 + 𝑟

′
10 and 𝑑

′
11 = 𝑑′8 ∨ 𝑑′10.

Node 7 in Fig. 2(c) The return instruction just outputs the incom-
ing value and the deoptimization flag: 𝑟 ′7 = 𝑟 ′6 and 𝑑

′
7 = 𝑑′6

function bar(a) {

let y = 0;

if (a) y = -0;

y = Math.min(Infinity ? [] : Infinity, -0) / 0;

return y ? 1 : 0;

}

%PrepareFunctionForOptimization(bar);

bar(false); // 0 (before optimization)

%OptimizeFunctionOnNextCall(bar);

bar(false); // trace trap (after optimization)

(a) JS code crafted from Issue 1195650. (b) SoN from the JS code.

Figure 3: Issue 1195650 of Chromium [8].

Finally, EQ Checker checks whether the return values 𝑟7, 𝑟 ′7 are
equal for any input ‘a’. This is done by finding ‘a’ that satisfies
the negated condition using an SMT solver: (𝑟7 ≠ 𝑟 ′7) ∧ ¬𝑑7 ∧ ¬𝑑′7.
When a = false, 𝑟7 and 𝑟 ′7 have −0 and 0 without deoptimizations,
respectively. Thus, EQ Checker reports this mistransformation.

3.2 A Miscompilation Bug: Issue 1195650

The previous example demonstrates how the symbolic formula of
the correctness of the compilation is written. Now, we will move to
a slightly more complicated bug that involves UB.

3.2.1 Bug Description. Fig. 3(a) shows a JS code crafted from an-
other miscompilation issue [8]. The value of y at line 4 is NaN
because it divides -0 with 0. Since NaN is interpreted as false in JS,
the return value is always zero.

However, TurboFan incorrectly optimizes the code and gener-
ates an IR with UB. Fig. 3(b) shows the simplified version of the
IR. In TurboFan IR, deoptimization is triggered if an argument of
Math.min is not a number type value. In this example, the first ar-
gument of Math.min is the empty array ([]) which is not a number
type value. Thus, this function always triggers a deoptimization
regardless of which branch is taken at line 3. TurboFan should
have inserted the instruction Deoptimize, which explicitly triggers
a deoptimization to both of the branches. After that, node Unreach-
able should have been inserted after Deoptimize to indicate that
the rest of the code is dead. However, TurboFan incorrectly in-
serts Unreachable as shown in the figure. Therefore, the compiled
code does not trigger a deoptimization when the input is false but
executes invalid code that leads to SIGTRAP.
3.2.2 Validation via SMT Solving. TurboTV considers the reach-
ability to Unreachable as UB. We check whether an input exists



Translation Validation for JIT Compiler in the V8 JavaScript Engine ICSE ’24, April 14–20, 2024, Lisbon, Portugal

that makes the execution reachable to the node. Similar to the de-
optimization flag, we denote the UB flag at node 𝑖 by 𝑢𝑖 that is set
when a UB is triggered. Here is the SMT encoding to detect the UB
of bar in Fig. 3(b):

Node 1 Suppose 𝑝 is the parameter value that can be an arbitrary
value. Initially, the UB flag and deoptimization flags are not set:
𝑟1 = 𝑝 and 𝑢1 = 𝑑1 = false.

Node 2 The result 𝑟2 is a boolean value obtained by converting 𝑟1
according to the ECMA Specification. This node does not trigger
UB and deoptimization; the flags are copied from node 1: 𝑟2 =

ToBool(𝑟1), 𝑢2 = 𝑢1, and 𝑑2 = 𝑑1.
Node 3, 4, and 5 The nodes do not evaluate any value but propa-
gate the flags: 𝑢5 = 𝑢4 = 𝑢3 = 𝑢2 and 𝑑5 = 𝑑4 = 𝑑3 = 𝑑2.

Node 6 The function triggers a deoptimization if this node is reach-
able. That is, the branch condition is true , and no UB has been
triggered before the node: 𝑑6 = IsTrue(𝑟2) ∧ ¬𝑢4. The UB flag is
propagated from the previous node if the branch condition holds:
𝑢6 = IsTrue(𝑟2) ∧ 𝑢4.

Node 7 Similarly, we set the UB flag only when this node is reach-
able. In this case, we consider the node to be reachable if the
branch condition is false and no deoptimization has been trig-
gered before the node:𝑑7 = IsFalse(𝑟2)∧𝑑5 and𝑢7 = IsFalse(𝑟2)∧
¬𝑑5.

Node 8 The flags are set if a deoptimization or a UB is triggered
along with the true or false branch: 𝑑8 = 𝑑6 ∨𝑑7 and 𝑢8 = 𝑢6 ∨𝑢7.

Finally, the UB Checker checks whether condition ¬𝑑8 ∧ 𝑢8 holds.
The condition is satisfiable if there is an input that triggers a UB
during the execution before triggering any deoptimizations.

In our operational semantics, there are three cases of erroneous
operations that have UB: (1) execution of the Unreachable node,
(2) out-of-bound memory access, and (3) the execution of a node
that is annotated with incorrect range information. The last case
happens when V8’s range analysis is buggy, and it is also the case
where our SMT-based approach has a benefit compared to the fuzzer
approach. A wrongful range annotation is not externally observable
unless a later compiler transformation utilizes the range informa-
tion and transforms the function into a crashing one. This condition
makes it hard for fuzzers to detect bugs in V8’s range analysis. Our
SMT-based approach can detect such bugs well because it does not
rely on the optimization pipeline.

Given the absence of a formal specification for TurboFan IR,
our definition of UB is grounded in a set of criteria. Firstly, we
conducted an analysis of known security bugs in V8, identifying
their root causes. Secondly, we cross-referenced these behaviors
with the classification of UB in LLVM IR. Finally, employing a
UB checker based on our definition, we conducted experiments
to confirm that our definition accurately captures the erroneous
behavior of TurboFan.

4 FORMAL SEMANTICS OF TURBOFAN IR

In this section, we introduce the IR of TurboFan (Sec. 4.1 and 4.2).
Also, we introduce the formal semantics of TurboFan IR defined
by us (Sec. 4.3). Formal semantics is used to symbolically encode
the final states of the given source and target functions, which are
also described in the previous section’s examples.

4.1 The Sea-of-Nodes IR

A SoN function is a directed labeled graph 𝐺𝑆 = ⟨Node,→S⟩. Each
node has a unique label and is associated with an instruction. We
assume an auxiliary function inst(𝑙) that provides the instruction
of a given node label 𝑙 . A directed edge between two nodes means
that a dependency exists between the instructions. An edge is either
a data edge, control edge, or effect edge. Data edges represent data
dependencies of registers and constants. Control and effect edges
specify control dependencies introduced by control instructions
(e.g., branch) and side effects (e.g., load/store), respectively.

In TurboFan, there are four categories of instructions that
are distinguished by in which compilation stage they appear: JS,
Simplified,Machine, and Common. Instructions in the JS category
appear immediately after the JS code is translated into the Turbo-
Fan IR. As operators in JS do, they can take any type of argument.
Then, TurboFan converts some JS instructions into Simplified in-
structions that are different from JS in two aspects. First, Simplified
instructions are aware of the precise memory layout of each object
and use primitive loads and stores to manipulate their fields. Second,
a typical Simplified instruction is specialized for a specific input
type. For example, SpeculativeNumberAdd is an addition that is
specialized for numbers. If inputs do not have the number type in
JS, it triggers deoptimization. Finally, the category at the lowest
level isMachine, whose instructions can be easily translated into
the assembly language. There is the last category called Common,
which contains instructions that can be shared across all levels such
as nodes for describing conditional branches.

4.2 Scheduling and Validity of Sea-of-Nodes

After all optimizations, the SoN graph is scheduled so that every
instruction has execution order. We simply call a scheduled SoN
graph as a control-flow graph (CFG). Given a SoN IR𝐺𝑆 = ⟨Node,→S

⟩, a CFG 𝐺 = ⟨Node,→C⟩ consists of the same set of nodes (Node)
and the control-flow edges (→C) between the nodes which may
differ from →S.

If 𝐺𝑆 does not specify total ordering between its nodes, there
may exist multiple possible schedules for 𝐺𝑆 . In such cases, V8
simply assumes that all the scheduled programs must be seman-
tically equivalent and derives a well-ordered CFG that preserves
all dependencies in 𝐺𝑆 . Given a SoN 𝐺𝑆 = ⟨Node,→S⟩, a CFG
𝐺 = ⟨Node,→C⟩ derived by a scheduling is well-ordered if

∀𝑐1, 𝑐2 ∈ Node. 𝑐2 →S 𝑐1 =⇒ 𝑐1 →+
C
𝑐2 .

Intuitively, if 𝑐2 depends on 𝑐1 according to 𝐺𝑆 , there must exist a
path from 𝑐1 to 𝑐2 in 𝐺 .

The validity of SoN, representing the V8’s assumption, is defined
using the above definition. A SoN graph 𝐺𝑆 is valid if all the well-
ordered CFGs scheduled from 𝐺𝑆 are semantically equivalent. V8
assumes that creation of an invalid 𝐺𝑆 is miscompilation.

For TV, TurboTV first checks the validity of input SoNs and then
chooses one of the well-ordered CFGs for subsequent validation.
The details of the validity checking will be described in Sec. 5.2.

4.3 Formal Semantics

We define the formal semantics of TurboFan IR in an operational
style. Strictly speaking, we define the formal semantics of pro-
gram execution of a control-flow graph 𝐺 rather than SoN 𝐺𝑆 .



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Seungwan Kwon, Jaeseong Kwon, Wooseok Kang, Juneyoung Lee, and Kihong Heo

State = Label × RegFile × Memory × Deopt × UB

RegFile = Register → Value

JSValue = TaggedPointer ⊎ TaggedSigned

Value = JSValue ⊎ Bool ⊎ Int8 ⊎ Int16 ⊎ Int32 ⊎ · · ·
TaggedPointer = BlockID × Int32

TaggedSigned = Int31

Memory = BlockID → Block

Block = Byte
∗

Figure 4: Semantic domains. JSValue is a set of values in JS,

whereas Value is a set of values used by TurboFan internally.

TaggedPointer and TaggedSigned has prefix ‘Tagged’ because

they are distinguished by a tag bit in the V8 internal.

Fig. 4 shows the definition of semantic domains. A program state
𝑆 = ⟨𝑙, 𝑅,𝑀, 𝐷,𝑈 ⟩ is a tuple of a node label, a register file, a memory,
a deoptimization flag, and a UB flag. RegFile is a mapping from reg-
isters to values. We consider common types of values in TurboFan
IR. Memory is a mapping from block IDs to memory blocks. Each
memory block is an array of bytes. The deoptimization and UB flags
at a state indicate that the program has triggered deoptimizations
and executed UB.

The semantics for each instruction is specified with a transition
relation. We denote (↩→) ⊆ 𝑆 ×𝑆 as the transition relation between
two states. Among TurboFan’s various operations, we formalize a
subset of Common, Simplified and Machine. Among Common op-
erations, we formalized function prologue and epilogue, constants,
branches, function calls, deoptimization, exception throw, and un-
reachable. For Simplified, we formalized operations on Boolean,
BigInt, String, Numbers, and memory operations. For Machine, we
formalized arithmetic, bit-wise operations, and memory operations.
Fig. 5 shows the semantics for selected instructions.

A parameter value 𝑣param is valid (ValidParam in Fig. 5) if it is a
valid representation of some value in JS. Note that every JS value is
either a TaggedSigned or TaggedPointer value in TurboFan. Integer
values that can be stored in 31-bit are typed with TaggedSigned.
All the other values are stored as heap objects, and the referring
TaggedPointer represents the value [21]. If 𝑣 is TaggedPointer, 𝑣 may
point to many kinds of heap objects. We constrain its referred object
to be either (1) floating-point values, (2) basic constants such as
undefined, (3) string values or (4) big-int values.

5 ENCODING SEMANTICS AND COMPILER

CORRECTNESS IN SMT

This section describes our SMT encoding scheme for the semantics
of TurboFan IR and the compiler correctness. We only consider
programs with a single function definition without loops and func-
tion calls to user-defined functions.

5.1 Encoding of Value and Memory

5.1.1 Value. We represent a value (an element of Value set) as a
69-bit-vector in SMT. The most significant five bits represent the
type of the value. Note that five bits (hence 25 values) are necessary
because we consider 22 types, 18 types of which are in the latest
version of TurboFan and 4 types are deprecated but supported for
backward compatibility. The Value set consists of the union of the
22 sets, which is omitted in Figure 4 for brevity. The remaining 64

bits encode the actual value according to the type. For example, for
int32 type values, 32 least significant bits of the vector are used.
Also, for float64 type values, we encode the value in IEEE-754
double-precision format. For function parameters, we encode the
well-formedness of the inputs described in Sec. 4.3 as an assertion
for each parameter. This restricts the SMT solver to find the function
inputs that only satisfy the criteria.

The operations in TurboFan are encoded to process inputs and
outputs as values in a 69-bit-vector. Taking the NumberAdd operator
as an example, which adds two floating-point numbers, we encode
it to convert inputs into floating-point expressions, perform the
addition, and then convert the result back into a 69-bit-vector value.
This resultant value serves as the output for subsequent operations.

5.1.2 Memory. We define a memory as a set of memory blocks.
Conceptually, amemory block corresponds to an object in Javascript.
A memory block contains bytes that describe the contents of the
object. We distinguish each memory block by assigning its unique
block ID, which is a non-negative integer. We encode memory with
two SMT arrays named Bytes and Bsize. Bytes is an SMT array
from TaggedPointer which is a 32-bit-vector to a byte which is an
8-bit-vector. Bsize maps a block ID to the size of each block.

TurboFan IR has a pointer that has an address to an object. A
pointer value, TaggedPointer, is defined as a 32-bit-vector variable
in SMT. According to [21], the maximum size of the memory can
be reasonably bounded to 4GiB. We use the high 8 bits of Tagged-
Pointer to describe the block ID and the low 24 bits as the block
offset. This implies that our validator may miss a bug if the bug
requires using more than 28 memory blocks or a single block larger
than 224 bytes. This is reasonable because the size of programs
fuzzer creates typically has a much smaller number of possibly
distinct pointer values than that. We will describe the limitations
due to approximations in Sec. 5.3.

As for the input parameters, we encode the well-formedness
precondition of loaded values in SMT as assertions. Also, we pre-
define a fewmemory blocks as memory blocks containing constants
in JS such as null, true and false.

5.2 Encoding Compiler Correctness

This section discusses the encoding of compiler correctness. The
validation process of TurboFan consists of two steps. Given a pair
of source and target SoN IRs, TurboTV first checks the validity
of the IRs as described in Sec. 4.2. Once both of the input SoN are
proven to be valid, TurboTV derives two well-ordered CFGs, each
of which is scheduled from the source and target SoNs. Finally,
TurboTV verifies the refinement relation between the two CFGs
using the UB Checker and EQ Checker, We will provide a detailed
description of each step in the following subsections.

5.2.1 Validity of SoN. Let us denote the set of CFG as G. We define
the execution of a CFG as a function Exec: G × State → State that
takes a CFG and an initial state as inputs and returns the final state.
The set State is defined in Sec. 4.3.

Now we formulate the validity of SoN in Sec 4.2. Given a SoN
𝐺𝑆 , let G𝐺𝑆

be the set of well-ordered CFGs scheduled from𝐺𝑆 . We
define 𝐺𝑆 to be valid if and only if the following condition holds:
∀𝐺𝑖 ,𝐺 𝑗 ∈ G𝐺𝑆

. ∀𝑆 ∈ State. Exec(𝐺𝑖 , 𝑆) = Exec(𝐺 𝑗 , 𝑆) .



Translation Validation for JIT Compiler in the V8 JavaScript Engine ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Param
inst(𝑙 ) = “𝑟 = Parameter”

𝑙 →C 𝑙 ′ ValidParam(𝑣param )
⟨𝑙,𝑅,𝑀,𝐷,𝑈 ⟩ ↩→ ⟨𝑙 ′,𝑅{𝑟 ↦→ 𝑣param},𝑀,𝐷,𝑈 ⟩

SpecSafeIntAdd
inst(𝑙 ) =“𝑟 =SpeculativeSafeIntegerAdd 𝑒1 𝑒2”
𝑙 →C 𝑙 ′ 𝑣1 = [[𝑒1 ]]𝑅 𝑣2 = [[𝑒2 ]]𝑅 𝑣 = 𝑣1 + 𝑣2

𝑑 = ¬(IsSafeInt(𝑣1 )∨
IsSafeInt(𝑣2 ) ∨ IsSafeInt(𝑣) )

⟨𝑙,𝑅,𝑀,𝐷,𝑈 ⟩ ↩→ ⟨𝑙 ′,𝑅{𝑟 ↦→𝑣′ },𝑀,𝐷∨𝑑,𝑈 ⟩

CheckedF64ToI32-MinusZero
inst(𝑙 ) =“𝑟 =CheckedFloat64ToInt32−0 𝑒”

𝑙 →C 𝑙 ′ 𝑣 = [[𝑒 ]]𝑅 𝑣′ = ToInt32(𝑣)
𝑑 = ¬(IsInt32(𝑣) ∨ 𝑣 = −0.0)

⟨𝑙,𝑅,𝑀,𝐷,𝑈 ⟩ ↩→ ⟨𝑙 ′,𝑅{𝑟 ↦→𝑣′ },𝑀,𝐷∨𝑑,𝑈 ⟩

Figure 5: Semantics of selected instructions. 𝑣param is the value of the parameter and the predicate ValidParam states its validity.

Notice that, to show the validity, it is enough to prove that all
effect edges are well-established. Recall that a SoN edge is either a
data, control, or effect edge. The data and control edges are well-
established by the construction of the CFG. Hence, we only need to
prove the validity of the effect edges that represent dependencies
introduced by side-effects such as memory load and store.

Let us consider two nodes in a SoN, denoted as𝑛𝑖 and𝑛 𝑗 , wherein
each node contains an operator accessing the samememory address.
To have a unique execution result regardless of scheduling, one
must depend on the other along the SoN edges (→S) if (1) both
of them perform write operations to the same memory address or
(2) one of them performs a write operation, and the other performs
a read operation to the same memory address. Then, we ensure that
all the scheduled CFGs from the SoN are semantically equivalent.
As a result, we can simplify the validity condition as follows:

∀𝑛𝑖 , 𝑛 𝑗 ∈ Node𝑒 . Reach(𝑛𝑖 , 𝑛 𝑗 ) ∧ Overlap(𝑛𝑖 , 𝑛 𝑗 ) =⇒ (𝑛𝑖 →S

+𝑛 𝑗 )
where Node𝑒 is the set of all nodes in the𝐺𝑆 whose operators have
side-effects. In this condition, Reach(𝑛𝑖 , 𝑛 𝑗 ) is true if and only if
𝑛 𝑗 is reachable from the starting node through𝑛𝑖 . Given a SoN𝐺𝑆 =

⟨Node,→S⟩,Reach(𝑛𝑖 , 𝑛 𝑗 ) is defined as follows:Reach(𝑛𝑖 , 𝑛 𝑗 ) ⇐⇒
𝑛0 →S

∗𝑛𝑖 →S

+𝑛 𝑗 where 𝑛0 be the starting node of the 𝐺𝑆 . Next,
Overlap(𝑛𝑖 , 𝑛 𝑗 ) is true if and only if the memory regions accessed
by executing 𝑛𝑖 and 𝑛 𝑗 can overlap. Let Access(𝑛) be the set of
block IDs accessed at node 𝑛. Then Overlap(𝑛𝑖 , 𝑛 𝑗 ) is defined as
follows:
Overlap(𝑛𝑖 , 𝑛 𝑗 ) ⇐⇒ ∃𝑏𝑖𝑑 ∈ BlockID. 𝑏𝑖𝑑 ∈ Access(𝑛𝑖 )∩Access(𝑛 𝑗 ) .

In summary, TurboTV encodes the negation of the simplified
validation condition as an SMT query. If the query is satisfiable, it
means that there exists a pair of nodes that can affect each other
but are not ordered in the 𝐺𝑆 . In this case, TurboTV reports the
given IR as invalid. If the validity is proven, TurboTV selects well-
ordered CFGs scheduled from both the source and target and then
proves the refinement relation between them.

5.2.2 Refinement. From an input state 𝑆 , we symbolically encode
the final state of source function 𝑓𝑠𝑟𝑐 (𝑆) and target function 𝑓𝑡𝑔𝑡 (𝑆)
by iteratively following our operational semantics (Sec. 4.3). To
deal with conditional branches, we track the reachability of instruc-
tion 𝑛 from the function entry, say Reach(𝑛), which is a boolean
expression in SMT. Then, the final state 𝑆 ′ holds the following
constraint:

∧
𝑖 Reach(return𝑖 ) =⇒ 𝑆 ′ = 𝑆return𝑖 where return𝑖

is 𝑖’th return node in the function and 𝑆return𝑖 is the state at the
point. Also, we encode a set of preconditions for the input state
Pre(𝑆) that are described in Sec. 4.3.

Now, we explain the verification conditions of UB Checker and
EQ Checker. The UB Checker’s verification condition is

∀𝑆 . (Pre(𝑆) ∧ ¬𝑓 (𝑆).𝐷) =⇒ ¬𝑓 (𝑆).𝑈

where .𝑈 and .𝐷 mean the UB and deoptimization flag of a state. To
turn this into a satisfiability problem, we use the negated formula.
We call UB Checker for functions 𝑓𝑠𝑟𝑐 and 𝑓𝑡𝑔𝑡 . The verification
condition of the EQ Checker – semantic equivalence – is as follows:

∀𝑆 . (Pre(𝑆) ∧ ¬𝑓𝑠𝑟𝑐 (𝑆) .𝐷 ∧ ¬𝑓𝑡𝑔𝑡 (𝑆) .𝐷) =⇒ 𝑓𝑠𝑟𝑐 (𝑆) = 𝑓𝑡𝑔𝑡 (𝑆) .

This condition is also negated for the SMT solver.

5.3 Approximation in the Encoded IR Semantics

5.3.1 Approximated Arithmetic Operations. We approximate com-
mon arithmetic functions that are expensive to encode exactly in
SMT. For math operations like sin(𝑥) and cos(𝑥), we encode them
as an if-then-else expression that returns values for some inputs
such as 0 for sin(0) and returns any value for all other inputs. For
the unknown inputs, we use UF (uninterpreted functions) in SMT.
For more complex operations that possibly read values from mem-
ory such as BigInt with bit-width larger than 64, we simply encode
them as UF. This may introduce false alarms if TurboFan optimizes
the operations to constants for inputs not appearing in the if-then-
else expression. We assume that all function calls do not update the
memory. This may introduce false positives and negatives.

5.3.2 Nondeterminism. It is known that JS may exhibit nondeter-
minism when the NaN (Not-a-Number) value is involved [4]. There
are multiple bit-representations of NaN, and a JS engine can pick
any of the NaN bit representations. We approximate NaN handling
by removing the nondeterminism and considering all NaN values
as equal. This is beneficial for two reasons. First, showing the com-
piler correctness of a program having nondeterministic behavior
is expensive in SMT because the refinement relation between two
behaviors becomes a subset relation rather than simple equality.
This causes using ∀ quantifiers. Second, FP theory in SMT solver
does not distinguish NaN of different bit representations. This ap-
proximation facilitates using the FP theory without additional costs.

5.3.3 Internal Data Structures of V8. TurboFan’s typical IR pro-
grams contain pointers to TurboFan’s internal data structures
in memory. Faithfully encoding the memory layout of these data
structures is essential for successful validation because, without the
layout knowledge, UB Checker may report false alarms. However,
it is impractical to fully define their layouts for two reasons. First,
V8 has a lot of internal data structures whose layouts depend on
the target architecture. Second, the data structures continuously
change as V8 evolves.

To reduce false alarms from this issue, we split the memory into
two regions: AngelicMemory and DemonicMemory. AngelicMem-
ory contains a set of memory blocks assumed to be pre-allocated by
V8.We assume that any operation on the pointer to AngelicMemory
as well as its transitive users, cannot raise undefined behavior (e.g.,



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Seungwan Kwon, Jaeseong Kwon, Wooseok Kang, Juneyoung Lee, and Kihong Heo

pointer dereference always succeeds). This may introduce missing
bugs but removes false alarms. Conversely, DemonicMemory is a
memory region not pre-allocated by V8. Load or Store to a memory
block in this region checks out-of-bounds as usual.

For the input parameters, we put the memory block referred by
the TaggedPointer into AngelicMemory. This helps our encoding
become more robust across the architectures and avoid the false
alarms related to the V8’s various internals. In TurboFan IR, there
is a type-check operator used to ensure the kind of referred object
before accessing it. When this check fails, the program is deopti-
mized. This is a speculative guard preventing a program from illegal
memory access. If we put the parameter referred block into Demon-
icMemory, we should encode this operator thoroughly. Otherwise,
our UB Checker may suffer from the false positive that is unreach-
able indeed or build the wrong deoptimization condition which
increases the false negative. However, it is impractical to encode
this type-check operator thoroughly since many kinds of objects
exist in V8. Thereby, we choose to put the parameter referred block
into AngelicMemory.

6 CROSS-LANGUAGE TV

In this section, we describe our efforts to extend TurboTV to sup-
port TV across different languages. We combine TurboTV with
Alive2, an SMT-based translation validator for LLVM [23, 24], and
validate translations from LLVM IRs to TurboFan IRs. The idea
is to use Wasm [38] as an intermediate language as LLVM has a
Wasm backend and TurboFan has a Wasm frontend. Thus, we
check the refinement relation between an LLVM source function
and its TurboFan target by simply combining the two tools. Since
LLVM and TurboFan have different memory models, we focus on
functions whose parameters and return values are numeric values.

Given an LLVM IR function, we encode the semantics of the
source function and its TurboFan target as SMT formulas. We first
generate the Wasm code of the function using LLVM and encode
the semantics of LLVM IR as an SMT formula using Alive2. Then,
we translate the Wasm code to TurboFan IR using TurboFan and
encode the semantics as an SMT formula using TurboTV. Finally,
we check the refinement between the two programs via the derived
SMT formulas using the refinement formula generated by Alive2.

According to the specification [39], Wasm programs also do not
have UB, so TurboFan IR should not have UB either. We use the
UB Checker to inspect that the TurboFan IR function does not
raise UB as in the JS case. However, unlike Wasm, LLVM IR may
have undefined behavior. Therefore, we cannot use the EQ Checker
that only checks equivalence but not refinement. With this cross-
language TV, we found a bug in the Wasm backend of LLVM. The
details of the bug will be discussed in the evaluation section.

7 COMBINING FUZZING AND TV

This section explains how we combine fuzzing and TurboTV. Since
TurboFan compiles JS code at runtime, it is impractical to use
TurboTV during the application execution for the overhead. Thus,
we employ fuzzing to generate a large number of JS functions and
check the correctness of TurboFan for the corpus using TurboTV.
This combination enables us to discover latent bugs that are not

observable as outcomes (e.g., crashes) by fuzzing alone while gen-
erating functions to trigger various optimization passes effectively.
We also introduce our effort to test TurboTV itself using a fuzzer.

Validation Corpus Generation. We first generate a large number
of JS programs as validation corpus. This process is designed to
effectively trigger diverse optimization passes in V8. Therefore, it is
crucial to generate not only a variety of JS statements in a function
body but also different calling contexts for function specialization.
The algorithm consists of two phases: 1) function body generation
and 2) call augmentation.

The first phase follows the standard process of fuzzing. We estab-
lish an initial set of seed programs using generation-based fuzzing.
Given a time budget, the fuzzer repeatedly generates random JS
functions called with a default argument (e.g., 0) and collects them
if they have any gain in terms of coverage of V8. Then, we generate
more programs using mutation-based fuzzing from the initial seed
programs in a similar way. We used Fuzzilli [32], a state-of-the-art
JS fuzzer for this process.

Furthermore, we specialized Fuzzilli to efficiently generate JS
functions for TurboTV. Fuzzilli is primarily designed to test the
overall pipeline of JS engines (e.g., parser or interpreter) rather than
being specialized for optimization. Therefore, the vanilla version
usually generates programs that do not trigger various optimiza-
tions. We implemented two key modifications to Fuzzilli to im-
prove efficiency. First, we configured Fuzzilli to generate code
within the scope of TurboTV. Fuzzilli provides a set of generators,
each of which generates specific types of statements or expressions.
For TurboTV, we only turned on the generators for our validation
scope. Second, we modified Fuzzilli to actively use function pa-
rameters in the body. JIT compilers often specialize functions based
on the types or values of their arguments. However, we observed
that the vanilla fuzzer often generates programs that do not use
the parameters at all. So we made Fuzzilli randomly change the
variables used in the body to the parameters.

The second phase derives different calling contexts for the func-
tions generated from the first phase. The algorithm is parameter-
ized with a set of constant values in JS. The set is used to generate
programs that use different constant values as arguments. In our
experiments, we chose 14 constants, each of which is a representa-
tive value of a type in JS (e.g., 0, [], and undef). Since calling the
same function multiple times with different arguments affects the
optimization passes in V8, we augment the generated functions dif-
ferently. In our experiments, we append two calls for each function
with all combinations of the chosen constant set. For example, two
function calls f(0); f([]); can be added to a generated function f.
Note that this augmentation only has marginal overhead since it
just enumerates candidate arguments without execution.

Using TurboTV as Fuzzing Oracle. We further incorporate Tur-
boTV into the fuzzing process by using it as a fuzzing oracle. Exist-
ing fuzzers typically run the generated programs with the engine
and observe the outcomes, such as crashes or differences between
engines. Instead, whenever the fuzzer generates a JS function that
achieves new code coverage in TurboFan, we validate its JIT com-
pilation using TurboTV. By doing so, TurboTV improves the de-
tectability of fuzzers while maintaining their efficiency in generat-
ing new JS functions. TurboTV can discover latent miscompilations



Translation Validation for JIT Compiler in the V8 JavaScript Engine ICSE ’24, April 14–20, 2024, Lisbon, Portugal

during intermediate optimization steps and also consider all possi-
ble input values of compiled functions. Moreover, we demonstrate
that the cost of TV is amortized to a small fraction of the running
time when the fuzzer runs long enough.

Testing TurboTV. We also utilized fuzzing to check the correct-
ness of TurboTV itself, following a similar approach to previous
work on compiler [22]. The idea is to use fuzzer to generate a pair of
JS functions that are semantically different and check whether Tur-
boTV incorrectly validates them as equivalent. We first generate a
large number of random JS functions using Fuzzilli. Next, we run
the functions with fixed arguments and collect the return values.
We used 0 and 1 for the arguments. Then, we partition the collected
functions into equivalent classes based on the return values. Finally,
we derive a pair of functions from different equivalent classes and
check whether TurboTV incorrectly validates them as equivalent.

8 EVALUATION

Our evaluation aims to answer the following research questions:

RQ1 How effective is TurboTV to validate JS JIT compilations?
RQ2 How effective is the cross-language TV?
RQ3 How effective is TurboTV as fuzzing oracle?

We implemented TurboTV comprising 12K lines of OCaml code
for encoding the semantics of 306 out of 914 operators of TurboFan
in V8 11.7.2, including arithmetic, bitwise, string, memory, and
control operators. We instrumented TurboFan to extract the IR
of each optimization pass. We used Z3 [? ] as the SMT solver and
implemented the fuzzer on top of Fuzzilli [32]. Our experiments
are conducted on a Linux machine with Intel Xeon 2.90GHz. We
evaluated TurboTV on the following four benchmarks:

• Bug: We collected 9 optimization bugs of TurboFan from the
Chromium bug tracker [6] reported between Jan 2020 and Dec
2022. We excluded other bugs reported before because V8 funda-
mentally changed the memory model in Dec 2019.

• UnitJS: We collected 580 loop-free JS functions for testing the JIT
compiler in mjsunit, the regression test suite of V8 [19].

• Corpus: We generated 196,000 JS programs using our validation
corpus generator. They are augmented with two function calls
with 14 constants from 1,000 initial loop-free JS functions.

• UnitLLVM: We collected 3,580 LLVM IR functions in the regres-
sion test cases for LLVM where the parameter and return types
are integer or float. We excluded functions that are not correctly
compiled to Wasm by LLVM.

8.1 Precision and Scalability of TurboTV

We first evaluate the effectiveness of TurboTV in discovering pre-
viously reported bugs in TurboFan. Table 1 shows the list of bugs
in the Bug benchmark and the validation results. For each bug, we
ran TurboTV for the JS function attached to the bug report and
validated whether the JIT compilation is correct. We set the timeout
to 3 minutes for each validation of reduction and IR.

The results indicate that TurboTV is robust enough to discover
real bugs in TurboFan. Our encoding covers a large portion of
instructions in TurboFan and does not miss any real bugs in the
benchmark. In total, there are 298 IRs and 114 reductions extracted

Table 1: Effectiveness of TurboTV in discovering known bugs. IRAll
(resp., RdcAll), and IRTV (resp., RdcTV) are the number of unique

IRs (resp., reductions) extracted from TurboFan and supported by

TurboTV, respectively. FP and TO are the numbers of false positives

and timeout. Detect indicates the checker that detects the bug. The

EQ checking is meaningless if the bug is detected by the UB Checker.

Bug ID

UB Checker EQ Checker

Detect

IR
All

IRTV FP TO Rdc
All

RdcTV FP TO

1195650 [8] 42 13 0 0 - - - - UB
1198705 [9] 63 32 0 8 - - - - UB
1404607 [15] 58 33 0 3 - - - - UB
1126249 [7] 20 20 0 0 17 17 0 0 EQ
1199345 [10] 13 13 0 0 10 10 0 0 EQ
1200490 [11] 41 30 0 0 37 26 0 0 EQ
1234764 [12] 19 19 0 2 15 15 0 2 EQ
1234770 [13] 12 12 0 3 9 9 0 2 EQ
1323114 [14] 30 11 0 0 26 8 0 0 EQ

Total 298 183 0 16 114 85 0 4

10 1 100 101 102

Time (s)
0%

20%

40%

60%

80%

100%
Ra

tio 53.79%

82.21%

(a) UB

10 1 100 101 102

Time (s)
0%

20%

40%

60%

80%

100%

Ra
tio

93.64% 96.50%

(b) EQ

Figure 6: Cumulative distribution of the validation time on

the Corpus benchmark. The x-axis is in the log scale.

from TurboFan. Among them, 183 (61%) IRs and 85 (75%) reduc-
tions consist of instructions supported by TurboTV. Among the
bugs, three can be detected by the UB Checker, and the EQ Checker
detects the remaining six. Overall, TurboTV does not report any
false positives and only results in 20 timeouts.

Next, we evaluate the performance of TurboTV on a large set
of JS programs: the UnitJS and Corpus benchmarks. Table 2 shows
the results. Among 4,935 targeted IRs and 4,387 targeted reduc-
tions in the UnitJS benchmark, both UB and EQ Checker showed a
significantly low false positive ratio (1%). Similarly, the result on
the Corpus benchmark, which contains larger JS files than UnitJS,
demonstrates the high accuracy of TurboTV. For the UB Checker,
TurboTV still produces less than 2% of false alarms. Notice that
there is no false positive reported by the EQ Checker. One of the
main reasons for false positives is out-of-scope objects. If the two
IRs return an object that TurboTV does not support, TurboTV
cannot check their equality but soundly alarms such cases.

Moreover, wemeasured the validation time of TurboTV. Fig. 6(a)
and 6(b) show the cumulative distribution of the validation time
on the Corpus benchmark. The results show that most validations
are completed within 10 seconds. Especially for the EQ check, over
96% of the validations are completed within 10 seconds. This also
indicates that 10 seconds can be a reasonable time budget when
TurboTV is used as a fuzzing oracle.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Seungwan Kwon, Jaeseong Kwon, Wooseok Kang, Juneyoung Lee, and Kihong Heo

Table 2: Effectiveness of TurboTV for large benchmarks. JS/LLVM indicate the number of JS and LLVM programs. IRAll (resp.,
RdcAll), and IRTV (resp., RdcTV) are the number of unique IRs (resp., reductions) extracted from TurboFan/LLVM and supported

by TurboTV, respectively. Val indicates the number of validated IRs and reductions validated by TurboTV. TP and Time show

the number of true positives and the average time for each validation except for timeouts. For cross-language TV, we use the

Refinement checker (Sec. 6) rather than the EQ checker.

Benchmark JS/LLVM
UB Checker EQ / Refinement Checker

IR
All

IRTV Val FP TO Time Rdc
All

RdcTV Val TP FP TO Time

UnitJS 580 16,425 4,935 4,434 32 469 9.42s 16,011 4,387 4,018 0 41 328 2.61s
Corpus 196K 172,921 14,974 13,402 251 1,321 9.16s 160,324 13,870 13,572 0 0 298 0.71s
UnitLLVM 3,580 3,580 2,659 2,659 0 0 0.11s 3,580 2,659 2,498 90 10 61 0.70s

According to the results, TurboTV is scalable to validate the com-
pilation of a large set of JS programs with low false positive rates.
This fact indicates that TurboTV can be used to effectively check
the correctness of JIT compilers with a large corpus in practice.

8.2 Effectiveness of Cross-Language TV

We evaluate the effectiveness of cross-language TV in UnitLLVM.
For each IR, we performed cross-language TV to validate whether a
function of LLVM and TurboFan are semantically equivalent. We
set the timeout to 3 minutes for each validation of IR.

Table 2 shows the result. Among 3,580 LLVM IRs in UnitLLVM,
2,659 IRs are supported by TurboTV. The UB Checker successfully
validated all IRs. The validations take 0.11 seconds on average. The
Refinement Checker discovered 90 miscompilations and showed
a significantly low false positive ratio (0.4%). The main reason
for the false positives is due to the physical memory models of
LLVM and TurboFan that are not completely captured by Alive2
and TurboTV. Such false positives can happen when IRs contain
instructions using physical addresses as values such as ptrtoint.

The 90 miscompilations are due to one common root cause. In
LLVM, an integer function parameter tagged with signextmust be
lowered to a larger machine register containing its sign-extended
value. Either caller or callee is responsible for storing sign-extended
values, but LLVM’s Wasm backend sometimes did not insert sign
extensions in any place.

Fig. 7 shows a representative case of the bug. In the LLVM source
IR, the function foo casts the first argument %x into a 32-bit integer
%e, and returns %y - %e. When LLVM compiles this function (foo)
to Wasm code using the -O2 option, it converts the first parameter
(%x) to a 32-bit integer due to the absence of a 1-bit integer type in
Wasm. Additionally, LLVM assumes that the first argument has been
sign-extended by the caller because the parameter %x possesses the
signext attribute.

For example, if another function main calls function foo with
values 1 and 0, the compiledWasm function should call function foo
with values -1 and 0. Note that the sign extension of a 1-bit integer
1 to a 32-bit integer is -1. However, when LLVM compiles the main
function with option -O0, the compiled function incorrectly calls
function foo with arguments 1 and 0. This makes the function foo
in the source and target return different values.

Initially, we decided that this was a bug in -O2 compilation of
foo. Since Wasm ABI [37] has multiple versions, we decided to
encode the Wasm calling convention based on LLVM’s -O0 option.
Also, the description of signext of the LLVM Language Reference

define i32 @foo(i1 signext %x, i32 %y) {

%e = zext i1 %x to i32

%r = sub i32 %y, %e

ret i32 %r

}

(a) Source LLVM IR.

func $foo (param i32 i32) (result i32)

local.get 1

local.get 0

i32.add

(b) Target Wasm code.

declare i32 @foo(i1 signext, i32)

define i32 @main() #0 {

%0 = call i32 @foo(i1 1, i32 0)

ret i32 %0

}

(c) LLVM IR calling function foo.

func $main (param i32 i32) (result i32)

i32.const 1

i32.const 0

call foo

return

(d) Miscompiled Wasm code.

Figure 7: Miscompilation found in the LLVMWasm backend.

0.0 50K 100K
Coverage

0

48

96

144

192

240

Ti
m

e 
(h

r)
0%

100%

200%

300%

400%

Ov
er

he
ad

 (%
)

Fuzzing
Fuzzing + TurboTV
Overhead

(a)

function foo(a, b) {

let v1 = 0 - a;

let v2 = b - 35;

let v3 = v1 >>> v2;

let v4 = v1 << (32 - v2);

let v5 = v3 ^ v4;

return v5;

}

(b)

Figure 8: Overhead of Fuzzilli combined with TurboTV (a)

and JS code snippet that triggers a miscompilation (b).

manual left the bit-width to extend as determined by the target
machine. This naturally made the -O2 optimization of foo classified
as wrong by TurboTV. However, after a discussion with LLVM
developers3, it was concluded that the translation of main with
-O0 was problematic. A patch that fixes this bug was reviewed by
developers and merged to LLVM.

This result indicates that our cross-language TV is effective in
finding real bugs in practice. The bugs cannot be discovered by
Alive2 or TurboTV alone since the tools only validate transfor-
mations to the same IR. However, the combination can effectively
validate the LLVM backend and the TurboFan frontend.

8.3 Effectiveness of TurboTV as Fuzzing Oracle

To demonstrate the scalability of TurboTV,we measured the over-
head of validator invocations by comparing the running time of

3https://github.com/llvm/llvm-project/issues/63388

https://github.com/llvm/llvm-project/issues/63388


Translation Validation for JIT Compiler in the V8 JavaScript Engine ICSE ’24, April 14–20, 2024, Lisbon, Portugal

TurboTV with the running time of its fuzzer only. We ran the
fuzzing algorithm described in Sec. 7 for 7 days using a typical
fuzzing oracle. That is, we usedV8 as an oracle and checkedwhether
the oracle produced crashes. Then, we measured the overhead of
our combination to achieve the same edge coverage of TurboFan
by using TurboTV as the fuzzing oracle. Since most validations are
completed within 10 seconds, as shown in Fig. 6, we set the timeout
to 10 seconds for each validation.

Fig. 8(a) shows the running time and overhead. The dotted lines
depict the accumulated time taken for the fuzzing process with and
without using TurboTV to achieve the same coverage. The solid
line represents the overhead at each point. Overall, the overhead
increases only for the first 86 minutes until covering 77K edges.
After that, it dramatically decreases and finally becomes 36%. In
total, the combination took 229 hours to cover 127K edges, while
the baseline fuzzing took 168 hours. Notice that we sequentially ran
TurboTV and the fuzzer; the fuzzer generates the next JS function
after the validation of the previously generated one. Since the two
tools run independently, we can run them in parallel to reduce the
overhead further.

We also demonstrate the effectiveness of the combination in
terms of detecting known bugs listed in Table 1. For this purpose,
we first ran state-of-the-art fuzzers, Fuzzilli and FuzzJIT [36] for
7 days. but failed to generate JS functions that trigger these known
bugs. Thus, we restricted Fuzzilli to only use the operators that are
necessary to trigger the bugs and a limited set of constants. Then
we evaluated its effectiveness when combined with TurboTV.

Combined with the restricted fuzzer, TurboTV successfully de-
tected Issue 1234764 [12] within only 15minutes, whereas the fuzzer
alone failed to reproduce the bugs within 24 hours. Fig. 8(b) shows
a JS function that reveals the bug. Note that the function triggers
the bug only when a specific value is used for the parameter b
(e.g., 3). The state-of-the-art fuzzers only use a fixed set of values
for function parameters, so they are unlikely to trigger the bug.
However, TurboTV considers all possible values for the parameter
by symbolically encoding the function semantics and consequently
detects the bug without choosing a specific parameter value.

The results indicate that TurboTV can be effectively used as
a precise fuzzing oracle for JIT compiler testing. As the coverage
increases, fuzzers typically have a hard time generating test cases to
cover new code paths. Thus, TurboTV can complement the fuzzers
by precisely checking the JIT compilation of the generated test
cases and amortizing overheads as the coverage increases.

9 RELATEDWORK

Recent years have witnessed an increasing interest in translation
validation, but all the previous work targets AOT compilers [1, 23,
24, 33]. We present new ideas for effectively applying translation
validation for a JIT compiler. We designed a staged strategy by
exploiting the characteristics of JS and SMT encoding for TurboFan
IR semantics considering deoptimization.

There have been several works on verified JIT compilers. Vera [5]
rewrote the range analysis module of the JIT compiler in Firefox
and formally verified it using an SMT solver. Barrière et al. also
presented a formally verified JIT compiler using Coq [2, 3]. These
approaches guarantee the full correctness of (a part of) compilers,

whereas TurboTV only validates a particular compilation. Instead,
TurboTV is a cheaper solution for checking the correctness of an
existing industrial JIT compiler without reimplementing it.

Our formal semantics is inspired by previous work that formal-
izes the denotational semantics for the value operators as well as
operational semantics for the control flow operators of SoN [17].
Based on their work, we define the formal semantics of TurboFan
IR, one of the most popular applications of SoN IR, and devise its
SMT encoding for translation validation.

There is a large body of research on testing JS engines and JIT
compilers. Fuzzing techniques have been successfully applied to test
JS engines [20, 26, 30, 32]. They randomly generate JS programs and
try to find crashes in the engines. Recent differential testing tech-
niques detect non-crashing bugs [4, 30, 36]. They crosscheck the
behavior of the same JS program executed by different interpreters
or JIT compilers. However, bugs in JS engines are not always ex-
ternally observable for all inputs. TurboTV checks the correctness
of a compilation for all input and discovers miscompilation bugs
regardless of the runtime execution path. We also demonstrated
that TurboTV can be effectively combined with existing fuzzers.

10 DISCUSSION

In the future, we will add support for more operators. We encoded
61% and 54% of the operators in the Common and Simplified cat-
egories. In the Machine category, we only focused on x86 and
encoded 52.5% of the x86 operators. Supporting the remaining oper-
ators will be straightforward. On the other hand, we did not encode
the semantics of JS operators because they are not related to most
of the observed bugs. Since JS operators are complicated, it may be
challenging to design efficient SMT encoding.

We plan to extend TurboTV to support interprocedural optimiza-
tions and functions containing loops. Validating interprocedural
optimizations requires knowing the semantics of invoked functions.
If the functions are subsequently JIT compiled by TurboFan, Tur-
boTV can encode their semantics, making the validation possible.
To support loops, TurboTV needs to synthesize loop invariants,
which can be found using existing techniques [34]. If loops are
known to iterate at most constant times, we can simply unroll the
loop and validate the transformed programs.

11 CONCLUSION

We proposed TurboTV, an SMT-based TV for TurboFan. We pre-
sented a staged strategy for TV for JS that enables us to derive
simpler SMT queries than the conventional approach. Also, we
demonstrated that TurboTV can be effectively combined with
fuzzing. We generated a large corpus of JS functions and used it to
check the correctness of TurboFan. Lastly, we applied TurboTV
to cross-language TV between LLVM and TurboFan using Wasm
as an intermediate language. The combination discovered a new
miscompilation of the LLVM Wasm backend.

ACKNOWLEDGMENTS

This work was partly supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2021R1A5A1021944, 2021R1C1C1003876).



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Seungwan Kwon, Jaeseong Kwon, Wooseok Kang, Juneyoung Lee, and Kihong Heo

REFERENCES

[1] Seongwon Bang, Seunghyeon Nam, Inwhan Chun, Ho Young Jhoo, and Juney-
oung Lee. 2022. SMT-Based Translation Validation for Machine Learning Com-
piler. In International Conference on Computer Aided Verification (CAV). Springer.

[2] Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie, and Jan
Vitek. 2021. Formally Verified Speculation and Deoptimization in a JIT Compiler.
Proceedings of the ACM on Programming Languages 5, POPL (2021).

[3] Aurèle Barrière, Sandrine Blazy, and David Pichardie. 2023. Formally Verified
Native Code Generation in an Effectful JIT: Turning the CompCert Backend
into a Formally Verified JIT Compiler. Proceedings of the ACM on Programming

Languages 7, POPL (2023).
[4] Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and

Thorsten Holz. 2022. Jit-Picking: Differential Fuzzing of JavaScript Engines.
In ACM Conference on Computer and Communications Security (CCS). ACM.

[5] Fraser Brown, John Renner, Andres Nötzli, Sorin Lerner, Hovav Shacham, and
Deian Stefan. 2020. Towards a Verified Range Analysis for JavaScript JITs. In
ACM SIGPLAN International Conference on Programming Language Design and

Implementation (PLDI). ACM.
[6] Chromium. 2016. Chromium Bug Tracker. https://bugs.chromium.org/p/

chromium/issues/list
[7] Chromium. 2020. Issue 1126249. https://bugs.chromium.org/p/chromium/issues/

detail?id=1126249
[8] Chromium. 2021. Issue 1195650. https://bugs.chromium.org/p/chromium/issues/

detail?id=1195650
[9] Chromium. 2021. Issue 1198705. https://bugs.chromium.org/p/chromium/issues/

detail?id=1198705
[10] Chromium. 2021. Issue 1199345. https://bugs.chromium.org/p/chromium/issues/

detail?id=1199345
[11] Chromium. 2021. Issue 1200490. https://bugs.chromium.org/p/chromium/issues/

detail?id=1200490
[12] Chromium. 2021. Issue 1234764. https://bugs.chromium.org/p/chromium/issues/

detail?id=1234764
[13] Chromium. 2021. Issue 1234770. https://bugs.chromium.org/p/chromium/issues/

detail?id=1234770
[14] Chromium. 2022. Issue 1323114. https://bugs.chromium.org/p/chromium/issues/

detail?id=1323114
[15] Chromium. 2023. Issue 1404607. https://bugs.chromium.org/p/chromium/issues/

detail?id=1404607
[16] Cliff Click and Keith D. Cooper. 1995. Combining Analysis, Combining Optimiza-

tions. ACM Transactions on Programming Languages and Systems (TOPLAS) 17, 2
(1995), 181–196.

[17] Delphine Demange, Yon Fernández de Retana, and David Pichardie. 2018. Seman-
tic Reasoning about the Sea of Nodes. In International Conference on Compiler

Construction (CC). ACM.
[18] ECMA International. 2022. ECMA-262 - ECMAScript Language Specifi-

cation. https://www.ecma-international.org/publications-and-standards/

standards/ecma-262/
[19] Google. 2008. V8. https://v8.dev
[20] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:

Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines.
In Network and Distributed System Security Symposium (NDSS). The Internet
Society.

[21] Igor Sheludko and Santiago Aboy Solanes. 2020. Pointer Compression. https:
//v8.dev/blog/pointer-compression

[22] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equiv-
alence modulo Inputs. In ACM SIGPLAN International Conference on Program-

mingLanguage Design and Implementation (PLDI).
[23] Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P Lopes. 2021. An

SMT Encoding of LLVM’s Memory Model for Bounded Translation Validation.
In International Conference on Computer Aided Verification (CAV).

[24] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
2021. Alive2: Bounded Translation Validation for LLVM. In ACM SIGPLAN

International Conference on ProgrammingLanguage Design and Implementation

(PLDI). ACM.
[25] Meta. 2022. React Native. https://reactnative.dev
[26] Mozilla Security. 2007. Funfuzz. https://github.com/MozillaSecurity/funfuzz
[27] OpenJS Foundation. 2022. Electron. https://www.electronjs.org
[28] OpenJS Foundation. 2022. JerryScript. https://jerryscript.net
[29] OpenJS Foundation. 2022. NodeJS. https://nodejs.org
[30] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing

JavaScript Engines with Aspect-preserving Mutation. In IEEE Symposium on

Security and Privacy (SP). IEEE.
[31] A. Pnueli, M. Siegel, and E. Singerman. 1998. Translation Validation. In Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS).
[32] Samuel Groß. 2022. Fuzzilli. https://github.com/googleprojectzero/fuzzilli
[33] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. 2013. Trans-

lation Validation for a Verified OS Kernel. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI). ACM.
[34] Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. 2020. Code2Inv: A

Deep Learning Framework for Program Verification. In International Conference

on Computer Aided Verification (CAV).
[35] The Hybrid Group. 2022. Cylon.Js. https://cylonjs.com
[36] Junjie Wang, Xiaoning Du Zhiyi Zhang, Shuang Liu, and Junjie Chen. 2023.

FuzzJIT: Oracle-enhanced Fuzzing for JavaScript Engine JIT Compiler. In USENIX

Security Symposium (Security). USENIX Association.
[37] World Wide Web Consortium. 2022. Webassembly ABIs. https://www.

webassembly.guide/webassembly-guide/webassembly/wasm-abis
[38] World Wide Web Consortium. 2023. Webassembly Organization Web Page.

https://webassembly.org/
[39] World Wide Web Consortium. 2023. WebAssembly Specification. https://

webassembly.github.io/spec/core/

https://bugs.chromium.org/p/chromium/issues/list
https://bugs.chromium.org/p/chromium/issues/list
https://bugs.chromium.org/p/chromium/issues/detail?id=1126249
https://bugs.chromium.org/p/chromium/issues/detail?id=1126249
https://bugs.chromium.org/p/chromium/issues/detail?id=1195650
https://bugs.chromium.org/p/chromium/issues/detail?id=1195650
https://bugs.chromium.org/p/chromium/issues/detail?id=1198705
https://bugs.chromium.org/p/chromium/issues/detail?id=1198705
https://bugs.chromium.org/p/chromium/issues/detail?id=1199345
https://bugs.chromium.org/p/chromium/issues/detail?id=1199345
https://bugs.chromium.org/p/chromium/issues/detail?id=1200490
https://bugs.chromium.org/p/chromium/issues/detail?id=1200490
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://bugs.chromium.org/p/chromium/issues/detail?id=1323114
https://bugs.chromium.org/p/chromium/issues/detail?id=1323114
https://bugs.chromium.org/p/chromium/issues/detail?id=1404607
https://bugs.chromium.org/p/chromium/issues/detail?id=1404607
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://v8.dev
https://v8.dev/blog/pointer-compression
https://v8.dev/blog/pointer-compression
https://reactnative.dev
https://github.com/MozillaSecurity/funfuzz
https://www.electronjs.org
https://jerryscript.net
https://nodejs.org
https://github.com/googleprojectzero/fuzzilli
https://cylonjs.com
https://www.webassembly.guide/webassembly-guide/webassembly/wasm-abis
https://www.webassembly.guide/webassembly-guide/webassembly/wasm-abis
https://webassembly.org/
https://webassembly.github.io/spec/core/
https://webassembly.github.io/spec/core/

	Abstract
	1 Introduction
	2 Overview
	2.1 The Sea-of-Nodes IR
	2.2 Translation Validation (TV)
	2.3 Our Approach: TurboTV
	2.4 Validation Scope of TurboTV

	3 Motivating Examples
	3.1 A Miscompilation Bug: Issue 1199345
	3.2 A Miscompilation Bug: Issue 1195650

	4 Formal Semantics of TurboFan IR
	4.1 The Sea-of-Nodes IR
	4.2 Scheduling and Validity of Sea-of-Nodes
	4.3 Formal Semantics

	5 Encoding Semantics and Compiler Correctness in SMT
	5.1 Encoding of Value and Memory
	5.2 Encoding Compiler Correctness
	5.3 Approximation in the Encoded IR Semantics

	6 Cross-language TV
	7 Combining Fuzzing and TV
	8 Evaluation
	8.1 Precision and Scalability of TurboTV
	8.2 Effectiveness of Cross-Language TV
	8.3 Effectiveness of TurboTV as Fuzzing Oracle

	9 Related Work
	10 Discussion
	11 Conclusion
	References

