
Selective Context-Sensitivity Guided by Impact Pre-Analysis

Hakjoo Oh1 Wonchan Lee1 Kihong Heo1 Hongseok Yang2 Kwangkeun Yi1

Seoul National University1, University of Oxford2

Abstract
We present a method for selectively applying context-sensitivity
during interprocedural program analysis. Our method applies
context-sensitivity only when and where doing so is likely to im-
prove the precision that matters for resolving given queries. The
idea is to use a pre-analysis to estimate the impact of context-
sensitivity on the main analysis’s precision, and to use this in-
formation to find out when and where the main analysis should
turn on or off its context-sensitivity. We formalize this approach
and prove that the analysis always benefits from the pre-analysis-
guided context-sensitivity. We implemented this selective method
for an existing industrial-strength interval analyzer for full C. The
method reduced the number of (false) alarms by 24.4%, while in-
creasing the analysis cost by 27.8% on average.

The use of the selective method is not limited to context-
sensitivity. We demonstrate this generality by following the same
principle and developing a selective relational analysis.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis

Keywords Static analysis, context-sensitive analysis

1. Introduction
Handling procedure calls in static analysis with a right balance be-
tween precision and cost is challenging. To precisely analyze pro-
cedure calls and returns, the analysis has to distinguish calls to
the same procedure by their different calling contexts. However,
a simple-minded, uniform context-sensitivity at all call sites easily
makes the resulting analysis non cost-effective. For example, imag-
ine a program analysis for proving the safety of array accesses that
uses the k-callstring approach [16, 17] for abstracting calling con-
texts. The k-callstring approach distinguishes two calls to the same
procedure whenever their k-most recent call sites are different. To
make this context-sensitive analysis cost-effective, we need to tune
the k values at the call sites in a way that we should increase the
k value only where the increased precision contributes to the proof
of array-access safety. If we simply use the same fixed k for all the
call sites, the analysis would end up becoming either unnecessar-
ily precise and costly, or not precise enough to prove the safety of
many array accesses.

In this paper, we present a method for performing selective
context-sensitive analysis, which applies the context-sensitivity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
PLDI’14, June 9–11, 2014, Edinburgh, United Kingdom
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00

only when and where doing so is likely to improve the precision
that matters for the analysis’s ultimate goal. Our method consists of
two steps. The first step is a pre-analysis that estimates the behavior
of the main analysis under the full context-sensitivity (i.e. using∞-
callstrings). The pre-analysis focuses only on estimating the impact
of context-sensitivity on the main analysis. Hence, it aggressively
abstracts the other semantic aspects of the main analysis. The sec-
ond step is the main analysis with selective context-sensitivity. This
analysis uses the results of the pre-analysis, selects influential call
sites for precision, and selectively applies context-sensitivity only
to these call sites. Our method can be instantiated with a range of
static analyses, and provides a guideline for designing impact pre-
analyses for them, in particular, an efficient way of implementing
those pre-analyses based on graph reachability.

One important feature of our method is that the pre-analysis-
guided context-sensitivity pays off at the subsequent selective
context-sensitive analysis. One way to see the subtlety of this im-
pact realization is to note that the pre-analysis and the selective
main analysis are incomparable in precision: the pre-analysis is
more precise than the main analysis in terms of context sensitivity,
but it is worse than the main analysis in tracking individual program
statements. Despite this mismatch, our guidelines for designing an
impact pre-analysis and the resulting selective context-sensitivity
ensure that the selective context-sensitive main analysis is at least
as precise as the fully context-sensitive pre-analysis, as far as given
queries are concerned.

We have implemented our method on an existing industrial-
strength interval analyzer for full C. The method led to the reduc-
tion of alarms from 6.6 to 48.3%, with average 24.4%, compared
with the baseline context-insensitive analysis, while increasing the
analysis cost from 9.4 to 50.5%, with average 27.8%.

The general principle behind the design and the use of our im-
pact pre-analysis can be used for developing other types of selective
analyses. We show its applicability by following the same princi-
ple and developing a selective relational analysis that keeps track
of relationships between variables, only when tracking them are
likely to help the main analysis answer given queries. In this case,
the impact pre-analysis is fully relational while it aggressively ab-
stracts other semantic aspects. We implemented this technique for
the octagon analysis [11] and our experiments show that our selec-
tive octagon analysis achieves competitive cost-precision tradeoffs
when applied to real-world benchmark programs.

Contributions

• We present a method for performing selective context-sensitive
analysis that receives guidance from an impact pre-analysis.
• We show that the general idea behind our selective method is

not limited to context-sensitivity. We present a selective rela-
tional analysis that is guided by an impact pre-analysis.
• We experimentally show the effectiveness of selective analyses

designed according to our method, with real-world C programs.

2. Informal Description
We illustrate our approach using the interval domain and the pro-
gram in Figure 1, which is adopted from make-3.76.1. Procedure
xmalloc is a wrapper of the malloc function. It is called twice in
procedure multi glob, once with the argument size (line 4) and
again with an input from the environment (line 6). The main routine
of this program calls procedure f and g. Procedure multi glob is
called in f and g with different argument values.

The program contains two queries. The first query at line 5 asks
whether p points to a buffer of size larger than 1. The other query at
line 7 asks a similar question, but this time for the pointer variable
q. Note that the first query always holds, but the second query is
not necessarily true.

Context-insensitive analysis If we analyze the program using
a context-insensitive interval analysis, we cannot prove the first
query. Since the analysis is insensitive to calling contexts, it esti-
mates the effect of xmalloc under all the possible inputs, and uses
this same estimation as the result of every call. Note that an input
to xmalloc at line 6 can be any integer, and the analysis concludes
that xmalloc allocates a buffer of size in [−∞,+∞].

Context-sensitive analysis A natural way to fix this precision
issue is to increase the context-sensitivity. One popular approach is
k-CFA analysis [16, 17]. It uses sequences of call sites up to length
k to distinguish calling contexts of a procedure, and analyzes the
procedure separately for such distinguished calling contexts. For
instance, 3-CFA analyzes the procedure xmalloc separately for
each of the following calling contexts:

4 · 10 · 14 4 · 10 · 15 4 · 11 · 16 4 · 11 · 17
6 · 10 · 14 6 · 10 · 15 6 · 11 · 16 6 · 11 · 17

(1)

Here a · b · c denotes a sequence of call sites a, b and c (we use
the line numbers as call sites), with a being the most recent call.
Note that the 3-CFA analysis can prove the first query: the analysis
analyzes the first four contexts separately and infers that a buffer of
size greater than 1 gets allocated under these calling contexts.

Need of selective context-sensitivity However, using such a “uni-
form” context-sensitivity is not ideal. It is often too expensive to run
such an analysis with high enough k, such as k ≥ 3 that our exam-
ple needs. More importantly, for many procedure calls, increasing
context-sensitivity does not help—either it does not improve the
analysis results of these calls, or the increased precision is not use-
ful for answering queries. For instance, at the second query, for ev-
ery k ≥ 0, the k-CFA analysis concludes that p points to a buffer of
size [−∞,+∞]. Also, it is unnecessary to analyze g separately for
call sites 16 and 17, because those two calls have the same effect
on the query.

Our selective context-sensitivity With our approach, an analysis
can analyze procedures with only needed context-sensitivity. It an-
alyzes a procedure separately for a calling context if doing so is
likely to improve the precision of the analysis and reduce false
alarms in its answers for given queries. For the example program,
our analysis first predicts that increasing context-sensitivity is un-
likely to help answer the second query (line 7) accurately, but is
likely to do so for the first query (line 5). Next, the analysis finds
out that we can bring the full benefit of context-sensitivity for the
first query, by distinguishing only the following four types of call-
ing contexts of xmalloc:

4 · 10 · 14, 4 · 10 · 15, 4 · 11, all the other contexts (2)

Note that contexts 4 · 11 · 16 and 4 · 11 · 17 are merged into a
single context 4 · 11. This merging happens because the analysis
figures out that two callers of g (line 16 and 17) do not provide
any useful information for resolving the first query. Finally, the

1 char* xmalloc (int n) { return malloc(n); }
2

3 void multi_glob (int size) {
4 p = xmalloc (size);
5 assert (sizeof(p) > 1); // Query 1
6 q = xmalloc (input());
7 assert (sizeof(q) > 1); // Query 2
8 }
9

10 void f (int x) { multi_glob (x); }
11 void g () { multi_glob (4); }
12

13 int main() {
14 f (8);
15 f (16);
16 g ();
17 g ();
18 }

Figure 1. Example Program

analysis analyzes the given program using the interval domain
while distinguishing calling contexts above and their suffixes (i.e.,
10 ·14, 10 ·15, 14, 15, 11). This selective context-sensitive analysis
is able to prove the first query.

Impact pre-analysis Our key idea is to approximate the main
analysis under full context-sensitivity using a pre-analysis, and
estimate the impact of context-sensitivity on the results of the main
analysis. This impact pre-analysis uses a simple abstract domain
and transfer functions, and can be run efficiently even with full
context-sensitivity.

For instance, we approximate the interval analysis in this ex-
ample using a pre-analysis with two abstract values: F and >.
Here > means all intervals, and F intervals of the form [l, u] with
0 ≤ l ≤ u. A typical abstract state in this domain is [x : >, y : F],
which means the following set of states in the interval domain:

{[x : [lx, ux], y : [ly, uy]] | lx ≤ ux ∧ 0 ≤ ly ≤ uy}.
This simple abstract domain of the pre-analysis is chosen because
we are interested in showing the absence of buffer overruns and
the analysis proves such properties only when it finds non-negative
intervals for buffer sizes and indices.

We run this pre-analysis under full context-sensitivity (i.e.,∞-
CFA). For our example program, we obtain a summary of the
procedure xmalloc with eight entries, each corresponding to a
different context in (1). The third column of the table below shows
this summary:

Size of the allocated buffer in xmalloc
Contexts Main analysis Pre-analysis

4 · 10 · 14 [8, 8] F
4 · 10 · 15 [16, 16] F
4 · 11 · 16 [4, 4] F
4 · 11 · 17 [4, 4] F
6 · 10 · 14 [−∞,+∞] >
6 · 10 · 15 [−∞,+∞] >
6 · 11 · 16 [−∞,+∞] >
6 · 11 · 17 [−∞,+∞] >

The second column of the table shows the results of the interval
analysis with full context-sensitivity. Note that the pre-analysis
in this case precisely estimates the impact of context-sensitivity:
it identifies calling contexts (i.e., the first four contexts in the
table) where the interval analysis accurately tracks the size of the
allocated buffer in xmalloc under the full context-sensitivity. In
general, our pre-analysis might lose precision and use>more often

than in the ideal case. However, even when such approximation
occurs, it does so only in a sound manner—if the pre-analysis
computes F for the size of a buffer, the interval analysis under
full context-sensitivity is guaranteed to compute a non-negative
interval.

Use of pre-analysis results Next, from the pre-analysis results,
we select calling contexts that help improve the precision regard-
ing given queries. We first identify queries whose expressions are
assigned with F in the pre-analysis run. In our example, the pre-
analysis assigns F to the expression sizeof(p) in the first query.
We regard this as a good indication that the interval analysis under
full context-sensitivity is likely to estimate the value of sizeof(p)
accurately. Then, for each query that is judged promising, we con-
sider the slice of the program that contributes to the query. We con-
clude that all the calls made in the slice should be tracked precisely.
For example, if a slice for a query looks as follows:

query
f h i

g

• • •
•

•

Then, we derive calling contexts f, g, {h · f, h · g}, and {i · h ·
f, i · h · g} for procedure f, g, h, and i, respectively. However,
if the slice involves a recursive call, we exclude the query since
otherwise, we need infinitely many different calling contexts. In
our example program, the slice for the first query includes all the
execution paths from lines 11, 14, and 15 to line 5. Note that call-
sites 16 and 17 are not included in the slice, and that all the calling
contexts of xmalloc in this slice are: 4 · 10 · 14, 4 · 10 · 15, and
4 · 11. Our analysis decides to distinguish these contexts and their
suffixes.

Impact realization Our method guarantees that the impact esti-
mation under full context-sensitivity pays off at the subsequent se-
lective context-sensitive analysis. That is, in our example program,
the selective main analysis, which distinguishes only the contexts in
(2), is guaranteed to assign a nonnegative interval to the expression
sizeof(p) at the first query. This guarantee holds because our se-
lective context-sensitive analysis distinguishes all the calling con-
texts that matter for the selected queries (Section 5.2) and ensures
that undistinguished contexts are isolated from the distinguished
contexts (Section 4). For instance, although the call to xmalloc at
line 6 is analyzed in a context-insensitive way, our analysis ensures
that xmalloc in this case returns only to line 6, not to line 4.

Application to relational analysis Behind our approach lies a
general principle for developing a static analysis that selectively
uses precision-improving techniques, such as context-sensitivity
and relational abstract domains. The principle is to develop an
impact pre-analysis that finds out when and where the main static
analysis under the full precision setting is likely to have an accurate
result, and to choose an appropriate precision setting of the main
analysis based on the results of this pre-analysis.

For instance, suppose that we want to develop a selective ver-
sion of the octagon analysis, which tracks only some relationships
between program variables that are likely to be tracked well by
the octagon analysis and also to help the proofs of given queries.
To achieve this goal, we design an impact pre-analysis that aims
at finding when and where the original octagon analysis is likely to
infer precise relationships between program variables. In Section 6,
we describe this selective octagon analysis in detail.

3. Program Representation
We assume that a program P is represented by a control flow graph
(C,→,F, ι) where C is the finite set of nodes, (→) ⊆ C × C
denotes the control flow relation between nodes, F is the set of
procedure ids, and ι ∈ C is the entry node of the main procedure.

The entry node ι does not have predecessors. A node c ∈ C in the
program is one of the five types:

C = Ce (Entry Nodes)] Cx (Exit Nodes)
] Cc (Call Nodes)] Cr (Return Nodes)
] Ci (Internal Nodes)

Each procedure f ∈ F has one entry node and one exit node. Given
a node c ∈ C, fid(c) denotes the procedure enclosing the node.
Each call-site in the program is represented by a pair of call and
return nodes. Given a return node c ∈ Cr , we write callof(c) for
the corresponding call node. We assume for simplicity that there
are no indirect function calls such as calls via function pointers.

We associate a primitive command with each node c of our con-
trol flow graph, and denote it by cmd(c). For brevity, we consider
simple primitive commands specified by the following grammar:

cmd → skip | x := e

where e is an arithmetic expression: e→ n | x | e+ e | e− e. We
denote the set of all program variables by Var.

For simplicity, we handle parameter passing and return values of
procedures via simple syntactic encoding. Recall that we represent
a call statement x := fp(e) (where p is a formal parameter of
procedure f) with call and return nodes. In our program, the call
node has command p := e, so that the actual parameter e is
assigned to the formal parameter p. For return values, we assume
that each procedure f has a variable rf and the return value is
assigned to rf : that is, we represent return statement return e of
procedure f by rf := e. The return node has command x := rf ,
so that the return value is assigned to the original return variable.
We assume that there are no global variables in the program, all
parameters and local variables of procedures are distinct, and there
are no recursive procedures.

4. Selective Context-Sensitive Analysis with
Context-Sensitivity Parameter K

We consider selective context-sensitive analyses specified by the
following data: (1) a domain S of abstract states, which forms a
complete lattice structure (S,v,⊥,>,t,u); (2) an initial abstract
state sI ∈ S at the entry of the main procedure; (3) a monotone
abstract semantics of primitive commands JcmdK : S → S; (4) a
context selector K that maps procedures to sets of calling contexts
(sequences of call nodes):

K ∈ F→ ℘(C∗c).

For each procedure f , the set K(f) specifies calling contexts that
the analysis should differentiate while analyzing the procedure. We
sometimes abuse the notation and denote by K the entire set of
calling contexts in K: we write κ ∈ K for κ ∈

⋃
f∈FK(f).

With the above data, we design a selective context-sensitive
analysis as follows. First, we differentiate nodes with contexts in
K, and define a set CK ⊆ C× C∗c of context-enriched nodes:

CK = {(c, κ) | c ∈ C ∧ κ ∈ K(fid(c))}.

The control flow relation (→) ⊆ C×C is extended to→K on CK :

Definition 1 (→K). (→K) ⊆ CK × CK is the context-enriched
control flow relation:

(c, κ)→K (c′, κ′) iff c→ c′ ∧ κ′ = κ (c′ 6∈ Ce] Cr)
c→ c′ ∧ κ′ = c ::K κ (c ∈ Cc ∧ c′ ∈ Ce)
c→ c′ ∧ κ = callof(c′) ::K κ′ (c ∈ Cx ∧ c′ ∈ Cr)

where (::K) ∈ Cc × C∗c → C∗c updates contexts according to K:

c ::K κ =

{
c · κ (c · κ ∈ K)
ε otherwise

where ε is the empty call sequence.

In our analysis, ε is used to represent all the other contexts not
included in K, and we assume that K includes ε if it is necessary.
For instance, consider a program where f has three different calling
contexts κ1, κ2, and κ3. When the analysis differentiates κ1 only,
undistinguished contexts κ2 and κ3 are represented by ε. Thus,
K(f) = {κ1, ε}. Note that our analysis isolates undistinguished
contexts from distinguished ones: ε means only κ2 or κ3, not κ1.

Example 1. The analysis is context-insensitive when K = λf.{ε}
and fully context-sensitive whenK=λf.C∗c . Our selective context-
sensitive analysis in Section 2 uses the following context selector
K= {main 7→ {ε}, f 7→ {14, 15}, g 7→ {ε}, multi glob 7→
{10 ·14, 10 ·15, 11}, xmalloc 7→{4 ·10 ·14, 4 ·10 ·15, 4 ·11, ε}}.

Next, we define the abstract domain D of the analysis:

D = (CK → S) (3)

The analysis keeps multiple abstract states at each program node c,
one for each context κ ∈ K(fid(c)). The abstract transfer function
F of the analysis works on CK , and it is defined as follows:

F (X)(c, κ) = Jcmd(c)K(
⊔

(c0,κ0)→K(c,κ)

X(c0, κ0)). (4)

The static analysis computes an abstract element X ∈ D satis-
fying the following condition:

sI v X(ι, ε) ∧ ∀(c, κ) ∈ CK . F (X)(c, κ) v X(c, κ) (5)

In general, many X can satisfy the condition in (5). Some
analyses compute the least X satisfying (5). Other analyses use
a widening operator [1],

`
: D × D → D, and compute not

necessarily the least, but some solution of (5).

Example 2 (Interval Analysis). The interval analysis is a standard
example that uses a widening operator. Let I be the domain of
intervals: I = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}.
Using this domain, we specify the rest of the analysis:

1. The abstract states are ⊥ or functions from program variables
to their interval values: S = {⊥} ∪ (Var→ I)

2. The initial abstract state is: sI(x) = [−∞,+∞].
3. The abstract semantics of primitive commands is:

JskipK(s) = s, Jx := eK(s) =

{
s[x 7→ JeK(s)] (s 6= ⊥)
⊥ (s = ⊥)

where JeK is the abstract evaluation of the expression e:

JnK(s) = [n, n], Je1 + e2K(s) = Je1K(s) + Je2K(s)
JxK(s) = s(x), Je1 − e2K(s) = Je1K(s)− Je2K(s)

4. The last component of the analysis is a widening operator,
which is defined as a pointwise lifting of the following widening
operators

`
I : I× I→ I for intervals:

[l, u]
`
I [l′, u′] = [ite(l′ < l, ite(l′ < 0,−∞, 0), l),

ite(u′ > u,+∞, u)]

where ite(p, a, b) evaluates to a if p is true and b otherwise. The
above widening operator uses 0 as a threshold, which is useful
when proving the absence of buffer overruns.

Queries Queries are triples in Q ⊆ C × S × Var, and they are
given as input to our static analysis. A query (c, s, x) represents

an assertion that every reachable concrete state at node c is over-
approximated by the abstract state s. The last component x de-
scribes that the query is concerned with the value of the variable
x. For instance, in the interval analysis, a typical query is

(c, λy. if (y = x) then [0,∞] else >, x)

for some variable x. It asserts that at program node c, the variable
x should always have a non-negative value. Proving the queries or
identifying those that are likely to be violated is the goal of the
analysis.

5. Impact Pre-Analysis for Finding K

Suppose that we would like to develop a selective context-sensitive
analysis in Section 4 for a given program and given queries, using
one of the existing abstract domains specified by the following data:

(S, sI ∈ S, J−K : S→ S),

To achieve our aim, we need to construct K a specification on
context-sensitivity for the given program and queries. Once this
construction is done, the rest is standard. The analysis can analyze
the program under partial context-sensitivity, using the induced
abstract domain D and transfer function F : D → D for this
program in (3) and (4). We assume that the analysis employs the
fixpoint algorithm based on widening operation

`
: D× D→ D.

How should we automatically choose an effective K that bal-
ances the precision and cost of the induced interprocedural anal-
ysis? In this section, we give an answer to this question. In Sec-
tion 5.1, we present an impact pre-analysis, which estimates the
behavior of the main analysis (S, sI , J−K) under full context-
sensitivity. In Section 5.2, we describe how to use the results of
this pre-analysis for constructing an effective context selector K.
Throughout the section, we fix our main analysis to (S, sI , J−K).

5.1 Designing an Impact Pre-Analysis
An impact pre-analysis for context sensitivity aims at estimating
the main analysis (S, sI , J−K) under full context-sensitivity. It is
specified by the following data:

(S], s]I ∈ S], J−K] : S] → S], K∞).

This specification and the way that the data are used in our pre-
analysis are fairly standard. S] and JcmdK] are, respectively, the
domain of abstract states and the abstract semantics of cmd used
by the pre-analysis, and s]I is an initial state. K∞ = λf.C∗c is the
context selector for full context-sensitivity. The pre-analysis uses
the abstract domain D] = CK∞ → S] and the following transfer
function F] : D] → D] for the given program:

F](X)(c, κ) = Jcmd(c)K](
⊔

(c0,κ0)→K∞ (c,κ)

X(c0, κ0)).

It computes the least X satisfying

s]I v X(ι, ε) ∧ ∀(c, κ) ∈ CK . F](X)(c, κ) v X(c, κ) (6)

What is less standard is the soundness and efficiency conditions
for our pre-analysis, which provides a guideline on the design of
these pre-analyses. Let us discuss these conditions separately.

Soundness condition Intuitively, our soundness condition says
that all the components of the pre-analysis have to over-approximate
the corresponding ones of the main analysis.1 This is identical to
the standard soundness requirement of a static program analysis,

1 We design a pre-analysis as an over-approximation of the main analysis,
because an under-approximating pre-analysis would be too optimistic in
context selection and the resulting selective main analysis is hardly cost-
effective.

except that the condition is stated not over the concrete semantics
of a given program, but over the main analysis. The condition has
the following four requirements:

1. There should be a concretization function γ : S] → ℘(S). This
function formalizes the fact that an abstract state of the pre-
analysis means a set of abstract states of the main analysis.

2. The initial abstract state of the pre-analysis has to overapproxi-
mate the initial state of the main analysis, i.e., sI ∈ γ(s]I).

3. The abstract semantics of commands in the pre-analysis should
be sound with respect to that of the main analysis:

∀s ∈ S, s] ∈ S]. s ∈ γ(s]) =⇒ JcmdK(s) ∈ γ(JcmdK](s])).

4. The join operation of the pre-analysis’s abstract domain over-
approximates the widening operation of the main analysis: for
all X,Y ∈ D and X], Y] ∈ D],

(X ∈ γ(X]) ∧ Y ∈ γ(Y])) =⇒ X
`
Y ∈ γ(X] t Y]).

The purpose of our condition is that the impact pre-analysis
over-approximates the fully context-sensitive main analysis:

Lemma 1. Let M ∈ D be the main analysis result, i.e., a solution
of (5) under full context-sensitivity (K = K∞). Let P ∈ D]
be the pre-analysis result, i.e., the least solution of (6). Then,
∀c ∈ C, κ ∈ C∗c . M(c, κ) ∈ γ(P (c, κ)).

Efficiency condition The next condition is for the efficiency of
our pre-analysis. It consists of two requirements, and ensures that
the pre-analysis can be computed using efficient algorithms:

1. The abstract states are ⊥ or functions from program variables
to abstract values: S] = {⊥} ∪ (Var→ V), where V is a finite
complete lattice (V,vv,⊥v,>v,tv,uv). An initial abstract
state is s]I = λx.>v .

2. The abstract semantics of primitive commands has a simple
form involving only join operation and constant abstract value,
which is defined as follows:

JskipK](s) = s, Jx := eK](s) =

{
s[x 7→ JeK](s)] (s 6= ⊥)
⊥ (s = ⊥)

where JeK] has the following form: for every s 6= ⊥,

JeK](s) = s(x1) t . . . t s(xn) t v

for some variables x1, . . . , xn and an abstract value v ∈ V, all
of which are fixed for the given e. We denote these variables
and the value by

var(e) = {x1, . . . , xn}, const(e) = v.

Example 3 (Impact Pre-Analysis for the Interval Analysis). We
design a pre-analysis for our interval analysis in Example 2,
which satisfies our soundness and efficiency conditions. The pre-
analysis aims at predicting which variables get associated with
non-negative intervals when the program is analyzed by an inter-
val analysis with full context-sensitivity K∞.

1. Let V = {⊥v,F,>v} be a lattice such that⊥v vv F vv >v.
Define the function γv : {⊥v,F,>v} → ℘(I) as follows:

γv(>v) = I, γv(F) = {[a, b] ∈ I | 0 ≤ a}, γv(⊥v) = ∅

This function determines the meaning of each element in V in
terms of a collection of intervals. The only non-trivial case
is F, which denotes all non-negative intervals according to
this function. We include such a case because non-negative
intervals, not negative ones, prove buffer-overrun properties.

2. The domain of abstract states is defined as S] = {⊥}∪(Var→
V). The meaning of abstract states in S] is given by γ such that
γ(⊥) = {⊥} and, for s] 6= ⊥,

γ(s]) = {s ∈ S | s = ⊥ ∨ ∀x ∈ Var. s(x) ∈ γv(s](x))}.

3. Initial abstract state: s]I = > = λx.>v.
4. Abstract evaluation JeK] of expression e: for every s 6= ⊥,

JnK(s)= ite(n ≥ 0,F,>v), Je1 + e2K(s)= Je1K(s)tv Je2K(s)
JxK(s)= s(x), Je1 − e2K(s)= >v
The analysis approximately tracks numbers, but distinguishes
the non-negative cases from general ones: non-negative num-
bers get abstracted to F by the analysis, but negative numbers
are represented by >v . Observe that the + operator is inter-
preted as the least upper bound tv , so that e1 +e2 evaluates to
F only when both e1 and e2 evaluates to F. This implements
the intuitive fact that the addition of two non-negative intervals
gives another non-negative interval. For expressions involving
subtractions, the analysis simply produces >v .

Running the pre-analysis via reachability-based algorithm The
class of our pre-analyses enjoys efficient algorithms (e.g., [3, 15])
for computing the least solution X that satisfies (6), even though
it is fully context-sensitive. For our purpose, we provide a variant
of the graph reachability-based algorithm in [15]. Our algorithm
is specialized for our pre-analysis and is more efficient than the
algorithm in [15]. Next, we go through each step of our algorithm
while introducing concepts necessary to understand it. In the rest
of this section, we interchangeably write K for K∞.

First, our algorithm constructs the value-flow graph of the given
program, which is a finite graph (Θ, ↪→) defined as follows:

Θ = C× Var, (↪→) ⊆ Θ×Θ

The node set consists of pairs of program nodes and variables, and
(↪→) is the edge relation between the nodes.

Definition 2 (↪→). The value-flow relation (↪→) ⊆ (C × Var) ×
(C×Var) links the vertices in Θ based on how values of variables
flow to other variables in each primitive command:

(c, x) ↪→ (c′, x′) iff c→ c′ ∧ x = x′ (cmd(c′) = skip)
c→ c′ ∧ x = x′ (cmd(c′) = y := e ∧ y 6= x′)
c→ c′ ∧ x ∈ var(e) (cmd(c′) = y := e ∧ y = x′)

We can extend the ↪→ to its context-enriched version ↪→K :

Definition 3 (↪→K). The context-enriched value-flow relation
(↪→K) ⊆ (CK×Var)×(CK×Var) links the vertices in CK×Var
according to the specification below:

((c, κ), x) ↪→K ((c′, κ′), x′) iff (c, κ)→K (c′, κ′) ∧ x = x′ (cmd(c′) = skip)
(c, κ)→K (c′, κ′) ∧ x = x′ (y 6= x′)
(c, κ)→K (c′, κ′) ∧ x ∈ var(e) (y = x′)

(where cmd(c′) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid
reachability relation (↪→†K) ⊆ Θ×Θ:

Definition 4 (↪→†K). The reachability relation (↪→†K) ⊆ Θ × Θ
connects two vertices when one node can reach the other via an
interprocedurally-valid path:

(c, x) ↪→†K (c′, x′) iff
∃κ, κ′. (ι, ε)→∗K (c, κ) ∧ ((c, κ), x) ↪→∗K ((c′, κ′), x′).

We use the tabulation algorithm in [15] for computing (↪→†K).
While computing (↪→†K), the algorithm also collects the set C of
reachable nodes:

C = {c | ∃κ. (ι, ε)→∗K (c, κ)}. (7)

Third, our algorithm computes a set Θv of generators for each
abstract value v in V. Generators for v are vertices in Θ whose
commands join v in their abstract semantics:

Θv = {(c, x) | cmd(c) = x := e ∧ const(e) = v}
∪ (if (v = >v) then {(ι, x) | x ∈ Var} else {})

Finally, using (↪→†K) and Θv , the algorithm constructs PAK :

Definition 5 (PAK). PAK ∈ C→ S] is defined as follows:

PAK(c)= if (c 6∈ C) then ⊥
else λx.

⊔
{v ∈ V |∃(c0, x0)∈Θv.(c0, x0) ↪→†K (c, x)}.

Then, PAK is the solution of our pre-analysis:

Lemma 2. Let X be the least solution satisfying (6). Then,
PAK(c) =

⊔
κ∈C∗ X(c, κ).

Our reachability-based algorithm is |V|3-times faster in the
worst case than the RHS algorithm [15]. The algorithm in [15]
works on a graph with the following set of vertices:

Θ′={(c, s) | c ∈ C ∧ s 6= ⊥ ∧ (∃x.∀y.y 6= x =⇒ s(y) = ⊥v)}

Note that the set Θ′ is |V|-times larger than set Θ used in our
algorithm and the worst-case time complexity is cubic on the size
of the underlying graph [15].

5.2 Use of the Pre-Analysis Results
Using the pre-analysis results, we select queries that are likely to
benefit from the increased context-sensitivity of the main analy-
sis. Also, we collect calling contexts that are worth being distin-
guished during the main analysis. The collected contexts are used
to construct a context selector K (Definition 10), which instructs
how much context-sensitivity the main analysis should use for each
procedure call. This main analysis with K is guaranteed to benefit
from the increased context-sensitivity (Proposition 1).

Query selection We first select queries that can benefit from in-
creased context-sensitivity. Among given queriesQ ⊆ C×S×Var
about the given program, we select the following ones:

Q]={(c, x) ∈ (C× Var) | ∃s ∈ S.
(c, s, x) ∈ Q ∧ ∀s′ ∈ γ(PAK∞(c)). s t s′ 6= >} (8)

where PAK∞ : C→ S] is the pre-analysis result. The first conjunct
says that (c, x) ∈ Q] comes from some query (c, s, x) ∈ Q, and
the second conjunct expresses that according to the pre-analysis re-
sult, the main analysis does not lose too much information regard-
ing this query. For instance, consider the case of interval analysis.
In this case, we are usually interested in checking an assertion like
1 ≤ x at c, which corresponds to a query (c, s, x) with the abstract
state s = (λz. if (x = z) then [1,∞] else >). Then, the second
conjunct in (8) becomes equivalent to PAK∞(c)(x) v F. That
is, we select the query only when the pre-analysis estimates that
the variable x will have at least a non-negative interval in the main
analysis. In the rest of this section, we assume for brevity that there
is only one selected query (cq, xq) ∈ Q] in the program.

Building a context selector Next, we construct a context selector
K : F → ℘(C∗c). K is to answer which calling contexts the main
analysis should distinguish in order to achieve most of the benefits
of context sensitivity on the given query (cq, xq). Our construction
considers the following proxy of this goal: which contexts should

the pre-analysis distinguish to achieve the same precision on the
selected query (cq, xq) as in the case of the full context-sensitivity?
In this subsection, we will define a context selector K (Definition
10) that answers this question (Proposition 1).

We construct K in two steps. Before giving our construction, we
remind the reader that the impact pre-analysis works on the value-
flow graph (Θ, ↪→) of the program and computes the reachability
relation (↪→†K∞) ⊆ Θ×Θ over the interprocedurally-valid paths.

The first step is to build a program slice that includes all
the dependencies of the query (cq, xq). A query (cq, xq) de-
pends on a vertex (c, x) in the value-flow graph if there exists
an interprocedurally-valid path between (c, x) and (cq, xq) on the
graph (i.e., (c, x) ↪→†K∞ (cq, xq)). Tracing the dependency back-
wards from the query eventually hits vertices with no predecessors.
We call such vertices sources and denote their set by Φ:

Definition 6 (Φ). Sources Φ are vertices in Θ where dependencies
begin: Φ = {(c0, x0) ∈ Θ | ¬(∃(c, x) ∈ Θ. (c, x) ↪→ (c0, x0))}.
We compute the set Φ(cq,xq) of sources on which the query (cq, xq)
depends:

Definition 7 (Φ(cq,xq)). Sources on which the query (cq, xq) de-
pends: Φ(cq,xq) = {(c0, x0) ∈ Φ | (c0, x0) ↪→†K∞ (cq, xq)}.

Example 4. Consider the control flow graph in Figure 2. Node
6 denotes the query point, i.e., (cq, xq) = (6, z). The gray nodes
represent the sources on which the query depends, i.e., Φ(6,z) =
{(1, x), (7, y)}.
For a source (c0, x0) ∈ Φ(cq,xq) and an initial context κ0 such that
(ι, ε)→∗K∞ (c0, κ0), the following interprocedurally-valid path

((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq) (9)

represents a dependency path for the query (cq, xq). We denote the
set of all dependency paths for the query by Paths(cq,xq):

Definition 8 (Paths(cq,xq)). The set of all dependency paths for
the query (cq, xq) is defined as follows:

Paths(cq,xq) = {((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq)
| (c0, x0) ∈ Φ(cq,xq) ∧ (ι, ε)→∗K∞ (c0, κ0)}.

Paths(cq,xq) is the program slice we intend to construct in this step.

Example 5. In Figure 2, suppose that κ0 and κ1 are the initial
contexts of procedures m and h, respectively. For source (1, x), we
find the following dependency path to the query (6, z):
p1 = ((1, κ0), x) ↪→K∞ ((2, κ0), x) ↪→K∞ ((3, 2 · κ0), y)
↪→K∞((4, 2 · κ0), y) ↪→K∞((5, 4 · 2 · κ0), z) ↪→K∞((6, 4 · 2 · κ0), z)

and, for source (7, y), we find the following path to (6, z):
p2 = ((7, κ1), y) ↪→K∞ ((8, κ1), y) ↪→K∞ ((5, 8 · κ1), z)

↪→K∞ ((6, 8 · κ1), z).

Then, Paths(6,z) = {p1, p2}.
The next step is to compute calling contexts that should be

treated precisely. Consider a dependency path from Paths(cq,xq):

((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq) (10)

where κ0, κ1, . . . , κq are the calling contexts appeared in the (fully
context-sensitive) pre-analysis. Instead, we are interested in partial
contexts that represent the “difference” between κi and κ0. Intu-
itively, if κ0 is a suffix of κi, i.e., κi = κ′i · κ0, the partial context
for κi is defined as κ′i. Formally, we define the partial calling con-
texts of κi as κi	κ0 = κi− suffix(κi, κ0) where suffix(κ1, κ2) is
the longest common suffix of κ1 and κ2. For example, when κi is
a suffix of κ0, we use ε as the partial context for κi: if κ0 = c2 · c1
and κi = c1, then κi 	 κ0 = ε. Suppose that κi and κ0 are not a

CFG

1x = 1

2call f 3y = x

4call g 5z = y+1

6z > 0?

7y = 10

8call g

m f g h

Calling
Contexts

κ0 2·κ0 {4·2·κ0, 8·κ1} κ1

Context
Selector K = {m 7→ ε, f 7→ {2, ε}, g 7→ {4·2, 8}, h 7→ ε}

Figure 2. Example context selector. Gray and black nodes in CFG
are source and query points, respectively.

suffix of each other, for instance κ0 = c2 · c1 and κi = c3 · c1. In
this case, κi 	 κ0 = c3.

Assumption 1. In general, the above definition of partial contexts
requires that the input program should be well-formed with respect
to the query: for a path (10) from a source to the query, every call
site, ci ∈ Cc, in that path should not be included in the initial
context κ0. We require this condition because our selective context-
sensitive analysis aims at distinguishing only the calls after pass-
ing the sources of dependency and analyzing context-insensitively
those encountered before reaching those sources, which do not
contribute to the query. This well-formedness assumption is not a
strong restriction and its violation nearly never happens in prac-
tice. We did not observe any violation of the assumption in our
benchmark programs (Section 7). If the program is not well-formed
to a query, then we simply ignore it.

Let us explain the condition with an example. Suppose that
κ0 = c3 · c2 · c1 is the initial context at c0 and κi = c1 is the
context at ci. Suppose further that ci is a call node. Then, our
condition requires that ci should not be one of call site c1, c2, and
c3. Formally, the condition is defined as follows:

We say the given program is well-formed with respect to the
query (cq, xq) iff for every (c0, x0) ∈ Φ(cq,xq) and its valid value-
flow path

((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq)

for all 0 ≤ i ≤ n such that ci ∈ Cc, ci is not included in the initial
calling context κ0; i.e.,

ci 6∈ κ0 (11)

where we write c ∈ κ when there exists some κ′ such that c · κ′ is
a suffix of κ.

In summary, for the path in (10), collecting contexts

{κ0 	 κ0, . . . , κq 	 κ0}

give all the necessary partial calling contexts, where each κi 	 κ0

belongs to the calling contexts of procedure fid(ci). Thus, we
define the context selector for the dependency path (10) as follows:

Definition 9 (Kp, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (cq, xq):

p = ((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq),

where κ0 is an initial context at c0 such that (ι, ε)→∗K∞ (c0, x0).
The context selector Kp for the path is defined as,

Kp = λf. {κi 	 κ0 | fid(ci) = f ∧ ((ci, κi),) ∈ p}.
Example 6. From the path p1 in Example 5, the collection of κi
is {κ0, 2 · κ0, 4 · 2 · κ0} (see Figure 2). Hence, the collection of
κi 	 κ0 is {ε, 2, 4 · 2}, where ε belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, Kp1 and Kp2 are:

Kp1 =

 m 7→ {ε}
f 7→ {2}
g 7→ {4 · 2}

 Kp2 =

[
h 7→ {ε}
g 7→ {8}

]
Then, the final context selector K is the union of Kp’s:

Definition 10 (K, Context Selector). Let (cq, xq) be a query. The
context selector K ∈ F→ ℘(C∗c) for our selective analysis is:

K(f) = E(f) ∪
⋃
{Kp(f) | p ∈ Paths(cq,xq)} (12)

where E(f) = {ε} if f 6= fid(cq); and otherwise, E(f) = ∅.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PAK∞ ∈ C → S]
be the result of the impact pre-analysis (Definition 5). Let q ∈
Q] be a selected query (8). Let K be the context selector for q
(Definition 10) defined using the pre-analysis result PAK∞ . Let
MAK ∈ CK → S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq PAK∞

where MAK vq PAK∞ iff (q let
= (c, x))

∀κ ∈ K(fid(c)). MAK(κ, c) ∈ γ(>[x 7→ PAK∞(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(ε), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [11].

Overview Consider the following code snippet:

1 int a = b;
2 int c = input(); // User input
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Query 1
5 assert (i < c); // Query 2
6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y ≤ c (where c ∈ Z ∪ {∞}) between all variables

x and y, can prove the first query. The analysis infers constraints
b − a ≤ 0 at line 1 and i − b ≤ −1 at line 3. Then, combining
the two via a closure operation [11], the analysis concludes that
constraint i − a ≤ −1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [11]) on the left side of the following:

a b c i

a 0 0 ∞ −1
b 0 0 ∞ −1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(13)

where the bound c in constraint x − y ≤ c is stored at row y and
column x in the table.2 Note that the (a,i) entry of the table stores
−1, which means that the analysis proves i− a ≤ −1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y ≤ a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and∞. Here x+y ≤ > represents
all octagon constraints of the form x + y ≤ c including the case
that c = ∞, whereas x + y v F means octagon constraints
x + y ≤ c with integer constant c. This simple abstract domain
is chosen because constant bound, not ∞, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (13).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for
the main analysis to answer query. For instance, consider that the
constraint regarding the first query is i− a v F. Our dependency
analysis figures out that the constraint was derived in the pre-
analysis by combining two constraints i−b v F and b−a v F in
its closure operation. Therefore, the dependency analysis concludes
that the main analysis should be able to derive three relationships
i − a v F, i − b v F, and b − a v F to prove the first query.
Based on this conclusion, our selective octagon analysis decides to
track the relationships between variables a, b, and i.

In the rest of this section, we formalize the key aspects of our
selective octagon analysis.

Selective octagon analysis We first specify selective octagon
analyses for the following simple commands:

cmd → x := y + k | x :=?

where k ∈ Z is a positive integer and ? models arbitrary integers.
We use Miné’s definitions [11] of the octagon domain O and ab-
stract semantics JcmdK : O → O of primitive commands; we

2 For simplicity, we consider only constraints of the form x − y ≤ c. In
fact, the octagon analysis tracks constraints of both forms x − y ≤ c and
x+ y ≤ c and maintains a matrix of size (2× |Var|)2.

consider the positive form x and negative form x̄ for each vari-
able x and represent an octagon domain element o ∈ O by a
2|Var| × 2|Var| matrix where each entry oxy ∈ Z ∪ {+∞} stores
the upper bound of y − x. The definition of JcmdK for our com-
mands can be found at [11].

With O and JcmdK, we define the domain of packed octagons
that assign an octagon to a subset of variables, which we call pack.
An octagon of a pack expresses only the constraints of the variables
in that pack. We call Π ⊆ ℘(Var) of sets of variables packing
configuration, such that

⋃
Π = Var. The packed octagon domain

PO(Π) parameterized by packing configuration Π is then defined
as PO(Π) = Π → O. We extend the abstract semantics JcmdK :
O → O of command cmd to JcmdKΠ : PO(Π) → PO(Π) as
follows:
JcKΠ(po) = λπ ∈ Π.

Jx := y + kK(po(π)) (c = x := y + k ∧ x ∈ π ∧ y ∈ π)
Jx :=?K(po(π)) (c = x := y + k ∧ x ∈ π ∧ y 6∈ π)
Jx :=?K(po(π)) (c = x :=? ∧ x ∈ π)
po(π) otherwise

The extended abstract semantics is essentially the same except it
forgets all the relationships of the assignee x (the second case)
when the pack is missing one variable involved in the octagonal
constraint. The abstract semantics of program in D = C→ PO(Π)
is defined as the least fixpoint of abstract transfer function FΠ :
D→ D, which is defined as usual.

The selectivity of the analysis is governed by the configuration
Π. For instance, with Π = {{x} | x ∈ Var}, the analysis degener-
ates to a non-relational analysis. With Π = {Var}, the analysis be-
comes a fully relational analysis. Our goal is to find a cost-effective
Π by using an impact pre-analysis.

Impact pre-analysis Second, we formally define the impact pre-
analysis. The meaning of our abstract values (V = {F,>}) is
described by γV such that γV(F) = Z and γV(>) = Z ∪ {+∞}.
The abstract state O] = {⊥]}∪V2|Var|×2|Var| of our pre-analysis is
the set of matrices whose entries are in V. An abstract state o] ∈ O]
denotes a set of octagons: we define γ : O] → ℘(O) as follows:

γ(o]) = {o ∈ O | ∀i, j. oij ∈ γV(o]ij)}

The abstract semantics JcmdK] : O] → O] of each primitive com-
mand cmd of the pre-analysis is defined as an over-approximation
of the abstract semantics of the main analyses: e.g.,

(
Jx :=?K](o])

)
ij

=

F (i = j = x or i = j = x̄)
> (i 6∈ {x, x̄} or j 6∈ {x, x̄})
o]ij otherwise

The abstract domain of the pre-analysis is D] = C → O] and
the pre-analysis result is defined as the least fixpoint of semantic
function F] : D] → D], which is defined as usual.

Use of pre-analysis results From the pre-analysis results (lfpF]),
we construct Π as follows. Assume that a set Q ⊆ C× Var × Var
of relational queries is given in the program. A query (c, x, y) ∈ Q
represents a predicate y−x < 0 at program point c and we say that
o ∈ O proves the query when oxy ≤ −1. We first select a set Q]
of queries that are judged promising by the pre-analysis:

Q] = {(c, x, y) ∈ Q | (lfpF])(c) 6= ⊥] ∧ (lfpF])(c)xy = F}.

Next, for each selected query (c, x, y) ∈ Q], we compute the pack
π(c,x,y) ⊆ Var of necessary variables using dependency analysis,
which is simultaneously done with the pre-analysis as follows: let
V\ be V×℘(Var) and O\ be the set of 2|Var|×2|Var|matrices over
V\. The idea is to over-approximate the involved variables for each
octagon constraint in the second component of V\. The abstract

semantics J·K\ : O\ → O\ is the same as J·K] except that it also
maintains the involved variables: e.g.,

(
Jx :=?K\(o\)

)
ij

=

(
F, {i, j}

)
(i = j = x or i = j = x̄)

(>,Var) (i 6∈ {x, x̄} or j 6∈ {x, x̄})
o\ij otherwise

Let F \ : (C→ O\)→ (C→ O\) be the abstract transfer function
and lfpF \ be its least fixpoint. Then, the pack π(c,x,y) is defined
as S such that

(
(lfpF \)(c)

)
xy

=
(
F, S

)
. Finally, we extract the

packing configuration Π using π(c,x,y) as follows:

Π = {π(c,x,y)} ∪ {{z} | z ∈ Var \ π(c,x,y)}. (14)

Selective main octagon analysis We run the selective octagon
analysis with the packing configuration in (14).

Proposition 2 (Impact Realization). Let π(c,x,y) be the pack for
query (c, x, y) defined by the result of our impact pre-analysis. Let
Π be the packing configuration for π(c,x,y), which is defined in (14).
Let FΠ be the transfer function of the selective octagon analysis
with the Π. Then,

(
(lfpFΠ)(c)(π(c,x,y))

)
xy
6= +∞.

7. Experiments
Selective Context-Sensitive Analysis In experiments, we used
SPARROW [19], a buffer-overrun analyzer that supports the full
set of the C language. The baseline analyzer performs a flow-
sensitive and context-insensitive analysis, and tracks both numeric
and pointer values. For numeric values, it uses the interval domain
by default (alternatively, it can use the octagon domain). In addition
to the interval domain, the analysis uses an allocation-site–based
heap abstraction for dynamic memory allocation.

On top of the baseline analyzer, we have implemented our tech-
nique: we implemented the impact pre-analysis in Example 3 and
extended the baseline analysis to be selectively context-sensitive.
In Section 5.2, we considered only one query; in implementation,
the pre-analysis computes a single context selectorK that specifies
calling contexts for multiple queries. When analyzing a procedure
under different calling contexts, we distinguish allocation sites for
each context; that is, an allocation-site produces different abstract
locations under different calling contexts.

We have run the analysis for 10 software packages from the
GNU open-source projects. The analysis is global: the entire pro-
gram is analyzed starting from the main procedure. All experiments
were done on a Linux 2.6 system running on a single core of Intel
3.07GHz box with 24GB of memory.

Table 1 presents the performance of our selective context-
sensitive analysis and compares it with the context-insensitive anal-
ysis. We measured the analysis precision by the number of buffer
accesses (#alarm) that cannot be proven safe by the analysis.

The results show that our method leads to a cost-effective im-
provement of the analysis precision. In total, the context-insensitive
interval analysis points out 12,701 buffer accesses as potential
buffer-overrun errors (there is a total of 83,776 buffer accesses in
the 10 programs). Our technique reduces the number down to 9,598
(24.4% reduction). In doing so, our technique increases the total
analysis time from 707.1s to 903.6s (27.8% increase).

We observed that passing numeric values through long call
chains is not uncommon in the interval analysis of C programs.
Our pre-analysis is able to prescribe such a long call sequence as
context-sensitive targets. For instance, in a2ps-4.14, among 1682
call sequences prescribed by our pre-analysis, 488 call sequences
were of length longer than or equal to 3.

According to our experience, the k-callstrings approach does
not scale when it is used with the interval abstract domain for ana-
lyzing C programs. The 2- and 3-callstrings approaches did not stop

after 30 minutes for programs over 10KLOC. Even the 1-callstrings
approach was slow and did not scale over 40KLOC. For instance,
the 3-callstrings approach succeeded to analyze spell-1.0 in
11.9s (with 30 alarms reported), it did not stop for bc-1.06.

Selective Octagon Analysis We have implemented our selective
method on top of the octagon-analysis version of our baseline
analyzer. We compare the performance of our selective analysis
with an existing octagon analysis based on the syntactic variable
packing [11, 13]. The syntactic packing approach relates variables
together if they are involved in the same syntactic block [11]. We
limited the maximum pack size by 10 in the syntactic packing
strategy, since otherwise the analysis did not scale.

Table 2 shows our benchmark programs. Note that, although a
relational analysis is a key to proving important numerical proper-
ties, it is useful only for specific target programs and queries [4, 11].
Thus, we first identified a set of benchmark programs and their
buffer-overrun queries whose proofs require relational information,
and compared the performance of the two analyses on these pro-
grams and queries. Column #Query shows the number of relational
queries that we consider in our experiments. In the experiments, we
manually in-lined the functions that are involved in the proofs of
the target queries, so that our selective relational analysis and the
syntactic packing approach are run under context-sensitivity.

The results show that our selective octagon analysis has a com-
petitive precision-cost balance. Among 135 queries in total, our
analysis is able to prove 132 (97.8%) queries in 3,632.7s. On the
other hand, the octagon analysis with syntactic packing proved 44
(32.6%) queries in 33,840.3s; the syntactic packing heuristic often
fails to prescribe variable relationships necessary to prove queries.
Our analysis is even faster than the counterpart in most cases be-
cause it selectively turns on relational analysis.

One thing to note is that running our pre-analysis is feasible
in practice even though it is fully relational. The bottlenecks of a
fully relational octagon analysis are the memory costs for repre-
senting 2|Var| × 2|Var| matrices and the expensive strong closure
operation [11] whose time complexity is cubic in the number of
variables. Thanks to the simplicity of the abstract domain (F or
>), we can reduce the memory cost using a sparse representation
for the matrices. For the closure operation, we use Dijkstra’s al-
gorithm and compute the shortest-path closure [11] instead of the
strong closure. In our experiments, using the shortest-path closure
made no difference in the pre-analysis precision.

8. Related Work
Most of the previous context-sensitive analysis techniques assign
contexts to calls in a uniform manner. The k-callstring approach
(or k-CFA) [16, 17] and its flexible variants [6], k-object sensitiv-
ity [10], and type sensitivity [18] are such cases. All these tech-
niques generate calling contexts according to a single fixed pol-
icy and do not explore how to tune their parameters (for example,
different k values at each call site) for target queries. The hybrid
context-sensitivity [8], which employs multiple policies of assign-
ing contexts in a single analysis, still does not tailor those poli-
cies to the program to analyze. There are also other approaches to
context-sensitivity based on function summaries like [15], but here
we do not discuss them as it is by itself a challenge to design a
summary-based analysis with abstract domains of infinite height.

While refinement-based analyses [5, 14, 20] are similar to our
approach (in that they use a “pre-analysis” to adjust the main analy-
sis precision), there is a fundamental difference in their techniques.
Refinement-based approaches (e.g., client-driven analysis [5]) start
with an imprecise analysis and refines the abstraction in response
to client queries. On the other hand, our approach starts with a
pre-analysis that estimates the impact of the most precise main

Program LOC Proc Context-Insensitive Our Selective Context-Sensitive Analysis Alarm Overhead
#alarm time #alarm pre main total #selected call-sites ; reduction pre main

spell-1.0 2,213 31 58 0.6 30 0.1 0.8 0.9 25 / 124 (20.2 %) 3 48.3% 16.7% 33.3%
bc-1.06 13,093 134 606 14.0 483 1.9 14.3 16.2 29 / 777 (3.7 %) 2 20.3% 13.6% 2.1%
tar-1.17 20,258 222 940 42.1 799 5.4 41.8 47.2 51 / 1213 (4.2 %) 3 15.0% 12.8% −0.7%
less-382 23,822 382 654 123.0 562 3.3 163.1 166.4 51 / 1,522 (3.4 %) 4 14.1% 2.7% 32.6%
sed-4.0.8 26,807 294 1,325 107.5 1,238 7.4 110.2 117.6 25 / 868 (2.9 %) 3 6.6% 6.9% 2.5%
make-3.76 27,304 191 1,500 84.4 1,028 7.1 99.1 106.2 67 / 1,050 (6.4 %) 3 31.5% 8.4% 17.4%
grep-2.5 31,495 153 735 12.1 653 2.4 13.5 15.9 33 / 530 (6.2 %) 3 11.2% 19.8% 11.6%
wget-1.9 35,018 434 1,307 69.0 942 12.5 69.6 82.1 79 / 1,973 (4.0 %) 5 27.9% 18.1% 0.9%
a2ps-4.14 64,590 980 3,682 118.1 2,121 29.5 148.2 177.7 237 / 2,450 (9.7 %) 9 42.4% 25.0% 25.5%
bison-2.5 101,807 1,427 1,894 136.3 1,742 34.6 138.8 173.4 173 / 2,038 (8.5 %) 4 8.0% 25.4% 1.8%
Total 346,407 4,248 12,701 707.1 9,598 104.2 799.4 903.6 770 / 12,545 (6.1 %) 24.4% 14.7% 13.1%

Table 1. Performance comparison between context-insensitive analysis and our selective context-sensitive analysis. LOC reports lines of code before pre-
processing. Proc shows the number of procedures in the programs. #alarm reports the number of buffer-overrun alarms raised by the analyses. pre reports the
time spent for running the pre-analysis (including query selection and building context selector) and main reports the time spent by the main analysis of our
approach. Each entry a/b (c%) in column #selected call-sites means that, among b call-sites in the program, a call-sites are selected for context-sensitivity
by our pre-analysis and the selection ratio is c%. ; reports the maximum call-depth prescribed by the pre-analysis. Overhead: pre shows the pre-analysis
overhead and main reports the cost increase in the main analysis due to increased context-sensitivity, compared to the context-insensitive analysis.

Program LOC #Variable #Query Syntactic Packing Approach Our Selective Relational Analysis Comparison
proven time mem pack proven pre main total mem pack Precision Time

calculator-1.0 298 197 10 2 0.3 63 18 (7.3) 10 0.1 0.1 0.2 52 3 (3.6) +8 -33.3%
spell-1.0 2,213 531 16 1 4.8 109 119 (7.7) 16 1.7 0.7 2.4 63 6 (11.0) +15 -50.0%
barcode-0.96 4,460 2,002 37 16 11.8 221 276 (8.1) 37 12.2 18.3 30.5 100 12 (25.0) +21 158.5%
httptunnel-3.3 6,174 1,908 28 16 26.0 220 454 (7.0) 26 10.8 4.5 15.3 105 8 (5.8) +10 -41.2%
bc-1.06 13,093 2,194 10 2 247.1 945 606 (7.8) 9 82.3 35.0 117.3 212 4 (4.0) +7 -52.5%
tar-1.17 20,258 5,332 17 7 1,043.2 1,311 1,259 (7.5) 17 598.5 63.3 661.8 384 7 (3.9) +10 -36.6%
less-382 23,822 4,482 13 0 3,031.5 1,439 1,017 (6.3) 13 2,253.2 596.2 2,849.4 955 8 (6.3) +13 -6.0%
a2ps-4.14 64,590 16,531 11 0 29,479.3 2,304 2,608 (7.8) 11 2,223.5 518.2 2,741.7 909 6 (6.7) +11 -90.7%
Total 135,008 33,177 142 44 33,840.3 6,611 139 5,182.3 1,236.3 6,418.6 2,780 +95 -81.0%

Table 2. Performance comparison between an octagon analysis with an existing syntactic packing strategy and our selective relational analysis. #Variable
denotes the number of variables (abstract locations) in the program. #Query denotes the number of buffer-overrun queries whose proofs require relational
reasoning. proven reports the number of queries that are proven by each octagon analysis. mem reports the peak memory consumption in megabytes. Each
X (Y) in column pack represents the number of non-singleton packs (X) and the average size (Y) of the packs used in each relational analysis. Precision and
Time shows additionally proven queries and time consumption by our selective relational analysis compared to the syntactic packing approach.

analysis. As a result, our approach provides a precision guarantee,
which does not hold in the refinement-based techniques. Further-
more, the principle behind our approach is general; it is applicable
to a range of static analyses (such as interval and octagon anal-
yses) with various precision axes (such as context-sensitivity and
relational analysis). Existing refinement-based analyses have been
special for pointer analyses [5, 14, 20].

Our approach is orthogonal to demand-driven analyses [7, 20,
21]. While demand-driven analyses aim to reduce analysis costs
by computing only the partial solution necessary to answer given
queries, we compute the exhaustive solution with an abstraction
tailored to the queries (our analysis is run once for the entire set of
queries). Both approach can complement each other.

In a high level, our approach suggests a novel technique for
analysis-parameter inference [9, 12, 22]. There are many param-
eters to tune in static analysis, to improve either precision or scala-
bility. The problem is how to find a set of minimal, or at least suf-
ficient, parameters for the goal. Liang et al. [9] use machine learn-
ing to find a minimal context-sensitivity for given queries. Guided
by the number of queries each analysis run has proven, the ma-
chine learning algorithm infers a minimal k value for each function.
However, they study the minimal abstraction itself and provide no
practical solutions for selective context-sensitivity. Zhang et al. [22]
present a technique for finding the optimum abstraction, a cheapest
abstraction that proves the query, but it is applicable only to dis-
junctive analyses. Naik et al. [12] use a dynamic analysis to select
an appropriate parameter for a given query, while we use a static
pre-analysis for parameter selection.

Our selective octagon analysis is similar to the existing octagon
analyses (such as [4, 11, 13]) in that they use variable packing and

and hence they are partially relational. However, while we selec-
tively construct variable packs that likely benefit the final analysis
precision, existing analyses blindly construct variable packs based
on syntactic heuristics [11, 13] or program dependencies [4].

9. Conclusion
We proposed a method of designing a selective “X-sensitive” anal-
ysis, where the selection is guided by an impact pre-analysis. We
followed this approach, presented two program analyses that se-
lectively apply precision-improving techniques, and demonstrated
their effectiveness with experiments in a realistic setting. The first
was a selective context-sensitive analysis that receives guidance
from an impact pre-analysis. Our experiments with realistic bench-
marks showed that the method reduces the number of false alarms
of a context-insensitive interval analysis by 24.4%, while increas-
ing the analysis cost by 27.8%. The second example was a selective
relational analysis with octagons using the same idea of impact pre-
analysis, and our experiments showed that our selective octagon
analysis proves 88 more queries than the existing one based on the
syntactic variable packing and reduces the analysis cost by 81%.
We believe that our approach can be used for developing other se-
lective analyses as well, e.g., selective flow-sensitive analysis, se-
lective loop-unrolling, etc.

Acknowledgements This work was partially supported by the En-
gineering Research Center of Excellence Program of Korea Min-
istry of Science, ICT & Future Planning(MSIP) / National Research
Foundation of Korea(NRF) (Grant NRF-2008-0062609) and Sam-
sung Electronics. Yang was supported by EPSRC.

References
[1] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni-

fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, 1977.

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation frame-
works. J. Log. Comput., 1992.

[3] Alain Deutsch. On the complexity of escape analysis. In POPL, 1997.
[4] Azadeh Farzan and Zachary Kincaid. Verification of parameterized

concurrent programs by modular reasoning about data and control. In
POPL, 2012.

[5] Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In
SAS, 2003.

[6] Williams L. Harrison III. The interprocedural analysis and automatic
parallelization of scheme programs. Lisp and Symbolic Computation,
1989.

[7] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis.
In PLDI, 2001.

[8] George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity
for points-to analysis. In PLDI, 2013.

[9] Percy Liang, Omer Tripp, and Mayur Naik. Learning minimal abstrac-
tions. In POPL, 2011.

[10] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for Java. In
ISSTA, 2002.

[11] Antoine Miné. The octagon abstract domain. Higher-Order and
Symbolic Computation, 19(1):31–100, 2006.

[12] Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv.
Abstractions from tests. In POPL, 2012.

[13] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun
Yi. Design and implementation of sparse global analyses for C-like
languages. In PLDI, 2012.

[14] John Plevyak and Andrew A. Chien. Precise concrete type inference
for object-oriented languages. In OOPSLA, 1994.

[15] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interproce-
dural dataflow analysis via graph reachability. In POPL, 1995.

[16] Micha Sharir and Amir Pnueli. Two approaches to interprocedural
data flow analysis. In Program Flow Analysis: Theory and Applica-
tions, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[17] Olin Grigsby Shivers. Control-flow analysis of higher-order lan-
guages -or- taming lambda. PhD thesis, CMU, 1991.

[18] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick
your contexts well: understanding object-sensitivity. In POPL, 2011.

[19] Sparrow. http://ropas.snu.ac.kr/sparrow.
[20] Manu Sridharan and Rastislav Bodı́k. Refinement-based context-

sensitive points-to analysis for Java. In PLDI, 2006.
[21] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodı́k.

Demand-driven points-to analysis for Java. In OOPSLA, 2005.
[22] Xin Zhang, Mayur Naik, and Hongseok Yang. Finding optimum

abstractions in parametric dataflow analysis. In PLDI, 2013.

A. Proofs
In this appendix, we prove the impact guarantee (Proposition 1) of
our selective context-sensitive analysis as well as the correctness of
our reachability-based pre-analysis algorithm (Lemma 2).

Remark 1. In the rest of this appendix, we generalize the notion of
the impact pre-analysis, and write PAK : C → S] for the solution
of the pre-analysis under context-sensitivity K. In the body of this
paper, we have discussed our pre-analysis and its reachability-
based algorithm only under full context-sensitivity (K = K∞).
However, the correctness of our pre-analysis (Lemma 2) holds
with arbitrary context selector K, as its proof does not assume a
particular instance of K (we prove this generalized lemma in A.2).

This implies that, regardless of the underlying context-sensitivity,
we can compute the least solution of the pre-analysis (6) via our
reachability algorithm.

A.1 Proof of Proposition 1
Proof. To show:

∀κ ∈ K(fid(c)). MAK(κ, c) ∈ γ(>[x 7→ PAK∞(c)(x)])

It is proved by Lemma 3 and 6:

γ(>[x 7→ PAK∞(c)(x)])
= γ(>[x 7→ PAK(c)(x)]) (Lemma 3)
⊇ γ(PAK(c)) (Soundness of >)
3 MAK(κ, c) (Lemma 6)

What is non-trivial is the first equality (Lemma 3), which asserts
that the result of the pre-analysis under full context-sensitivity
coincides with that of the pre-analysis under our selective context-
sensitivity K (Definition 10), as far as the selected query (c, x) is
concerned.

Lemma 3 (Pre-analysis Coincidence). Let (cq, xq) be a query.
Let PAK∞ be the pre-analysis result with full context-sensitivity.
Let K be the selective context-sensitivity for query (cq, xq) de-
fined using PAK∞ (Definition 10). Let PAK be the result of
the pre-analysis under the selective context-sensitivity K. Then,
PAK∞(cq) = PAK(cq) = ⊥ or

PAK∞(cq)(xq) = PAK(cq)(xq).

Proof. It is sufficient to show that, in the value-flow graph, the
query (cq, xq) is reachable from a source (c0, x0) under the full
context-sensitivity if and only if (cq, xq) is reachable from (c0, x0)
under the selective context-sensitivity K:

∀(c0, x0) ∈ Φ.

(c0, x0) ↪→†K∞ (cq, xq)⇐⇒ (c0, x0) ↪→†K (cq, xq).

• (=⇒) By Lemma 4.
• (⇐=) When (c0, x0) ∈ Φ(cq,xq), by the definition of Φ(cq,xq).

When (c0, x0) 6∈ Φ(cq,xq), by Lemma 5.

We prove this lemma in two steps. We first show that for every
(c, x) ∈ Φ(cq,xq), we have (c, x) ↪→†K (cq, xq) (Lemma 4).
Then, we prove that there is no (c′, x′) ∈ Φ \ Φ(cq,xq) such that
(c′, x′) ↪→†K (cq, xq) (Lemma 5). Comprising these two lemmas,
we can prove Lemma 3.

The following lemma shows that, for every K∞-valid value-
flow path from sources to the query, we can always find the corre-
sponding K-valid value-flow path.

Lemma 4. Suppose (c0, x0) ∈ Φ(cq,xq) and consider ci, κi, xi
such that
(ι, ε)→∗K∞ (c0, κ0) ∧
((c0, κ0), x0) ↪→K∞ ((c1, κ1), x1) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq).

Then, we have

((c0, κ
′
0), x0) ↪→K ((c1, κ

′
1), x1) ↪→K · · · ↪→K ((cq, κ

′
q), xq).

where κ′i = κi 	 κ0.

Proof. By the definition of K,

∀i. κ′i = κi 	 κ0 ∈ K.

We show that
∀0 ≤ i < n.
((ci, κi), xi) ↪→K∞ ((ci+1, κi+1), xi+1)
=⇒ ((ci, κ

′
i), xi) ↪→K ((ci+1, κ

′
i+1), xi+1)

where cn = cq , κn = κq , and xn = xq . This simply amounts to
showing the following:

∀0 ≤ i < n.
((ci, κi)→K∞ (ci+1, κi+1)) =⇒ ((ci, κ

′
i)→K (ci+1, κ

′
i+1)).

1. ci 6∈ Cc] Cx:
By the definition of→K∞ ,

κi = κi+1 κi 	 κ0 = κi+1 	 κ0.

By the definition of→K,

(ci, κi 	 κ0)→K (ci+1, κi+1 	 κ0).

2. ci ∈ Cc:
By the definition of→K∞ ,

κi+1 = ci · κi κi+1 	 κ0 = (ci · κi)	 κ0.

By the definition of K,

(ci · κi)	 κ0 ∈ K.

By the Assumption 1,

(ci · κi)	 κ0 6= ε

and hence

(ci · κi)	 κ0 = ci · (κi 	 κ0) ∈ K.

Therefore, by the definition of ::K and→K, we have

(ci, κi 	 κ0)→K (ci+1, ci ::K (κi 	 κ0)).

3. ci ∈ Cx:
By the definition of→K∞ ,

κi = callof(ci+1) · κi+1

and hence

κi 	 κ0 = (callof(ci+1) · κi+1)	 κ0.

Now we split into two cases.
(a) When (callof(ci+1) · κi+1)	 κ0 6= ε,

we have
κ′i = (callof(ci+1) · κi+1)	 κ0

= callof(ci+1) · (κi+1 	 κ0)
= callof(ci+1) · κ′i+1

From the definition of K, we have κ′i, κ
′
i+1 ∈ K. Therefore,

by the definition of ::K, we have

κ′i = callof(ci+1) ::K κ
′
i+1.

By the definition of→K,

(ci, κ
′
i)→K (ci+1, κ

′
i+1).

(b) When (callof(ci+1) · κi+1)	 κ0 = ε,
we have

κi 	 κ0 = κi+1 	 κ0 = ε

which means that κ′i = κ′i+1 = ε. Also, note that we have

callof(ci+1) ∈ κ0 (15)

from (callof(ci+1) · κi+1) 	 κ0 = ε. If we assume that
callof(ci+1) · κ′i+1 6∈ K, we can conclude that

(ci, κ
′
i)→K (ci+1, κ

′
i+1).

Now we prove that the assumption is actually true:

callof(ci+1) · κ′i+1 = callof(ci+1) 6∈ K.

Suppose callof(ci+1) ∈ K. Then, there should exist cj =
callof(ci+1) ∈ Cc such that

((c0, κ0), x0) ↪→∗K∞ ((cj , κj), xj) ↪→∗K∞ ((cn, κn), xn)

and
(cj · κj)	 κ0 = cj ∈ K.

By the Assumption 1, cj = callof(ci+1) 6∈ κ0, which
contradicts (15).

The following lemma formalizes the fact that our selective
context-sensitive analysis designed in Section 4 isolates undistin-
guished contexts from distinguished contexts: if a source does not
reach the query in the fully context-sensitive pre-analysis, then the
source does not reach the query in the selective context-sensitive
pre-analysis as well.

Lemma 5 (Isolation). For all (c0, x0) ∈ Φ \ Φ(cq,xq),

(c0, x0) 6↪→†K (cq, xq).

Proof. Suppose we have (c0, x0) ∈ Φ \ Φ(cq,xq) such that

(c0, x0) ↪→†K (cq, xq).

Then, by the definition of ↪→†K, there exists a ↪→K-path

((c0, κ0), x0) ↪→∗K ((cq, κq), xq)

for some κ0 and κq , which means that we have a→K-path

(c0, κ0)→K · · · →K (cq, κq). (16)

Because κq ∈ K(fid(cq)), by the definition of K we have a ↪→K∞ -
path from some source (cs, xs) ∈ Φ(cq,xq)

((cs, κs), xs) ↪→K∞ · · · ↪→K∞ ((cq, κ
′
q), xq),

where κq = κ′q 	 κs. Then, by Lemma 4, we have a ↪→K-path

((cs, ε), xs)→K · · · ↪→K ((cq, κq), xq) (17)

from which we can derive a→K-path

(cs, ε)→K · · · →K (cq, κq). (18)

This path should be distinct from the path (16). Let (ci, κi) be the
farthest point from the query that (16) and (18) agree. We further
assume that we have chosen the path (17) such that among all the
→K-paths from (cs, ε) to (cq, κq), (18) has the longest common
suffix with (16). Let (ci−1, κi−1) and (c′i−1, κ

′
i−1) be the first

diverging point from the query such that

(c0, κ0)→K · · · →K (ci−1, κi−1)

→K (ci, κi)→K · · · (cq, κq) (19)

and

(cs, ε)→K · · · →K (c′′i−1, κ
′′
i−1)

→K (ci, κi)→K · · · (cq, κq) (20)

where (ci−1, κi−1) 6= (c′′i−1, κ
′′
i−1). Note that (16) and (18) agree

each other at least at the query point. We now show that this is not
possible.

1. When ci 6∈ Ce] Cr:
By the definition of→K , we have

κi−1 = κi = κ′′i−1.

Thus, we should have

ci−1 → ci ∧ c′′i−1 → ci

where ci−1 6= c′i−1, which basically means that ci is a join
point and ci−1 and c′′i−1 exercise different branches. How-
ever, because we have considered all possible valid paths from
sources in Φ(cq,xq) to (cq, xq), we always find another path

(cs, ε)→K · · · →K (ci−1, κ
′′
i−1)

→K (ci, κi)→K · · · (cq, κq)

whenever we have path (20). Therefore, (ci, κi) cannot be the
farthest point.

2. When ci ∈ Ce:
By the definition of→K,

ci−1 ::K κi−1 = κi = c′′i−1 ::K κ
′′
i−1.

It should be either κi = ε and ci−1 · κi−1, c
′′
i−1 · κ′′i−1 6∈ K,

or κi 6= ε and (ci−1, κi−1) = (c′′i−1, κ
′′
i−1). From (18) and the

definition of K, we have

κi = κ′i 	 κs = (c′′i−1 · κ′i−1)	 κs
for some κ′i and κ′i−1 such that

(cs, κs)→ · · · → (c′′i−1, κ
′
i−1)→ (ci, κ

′
i)→ (cq, κ

′
q).

From the Assumption 1, we have

(c′′i−1 · κ′i−1)	 κs 6= ε.

We can deduce from this (ci−1, κi−1) = (c′′i−1, κ
′′
i−1). There-

fore, (ci, κi) cannot be the farthest point.
3. When ci ∈ Cr:

By the definition of→K,

κi−1 = callof(ci) ::K κi = κ′′i−1.

Also, by the definition of return edge 99K, we can deduce
ci−1 = c′′i−1 from ci−1 99K ci and c′′i−1 99K ci. Therefore,
(ci, κi) cannot be the farthest point.

The following lemma shows that our pre-analysis algorithm
correctly estimates the behavior of the main analysis if they use
the same context selector.

Lemma 6. Let K be an arbitrary context selector. Let MAK ∈ D
be the main analysis result, i.e., a solution of (5), under the K. Let
PAK ∈ C → S] be the result of the reachability-based algorithm
(Definition 5) under the K. Then,

∀c ∈ C, κ ∈ C∗c . MAK(c, κ) ∈ γ(PAK(c)).

Proof. This lemma is proved by Lemma 1 and Lemma 2, where
the proof of Lemma 1 is immediate from the abstract interpretation
framework [1, 2] and we omit the proof. We prove Lemma 2 in
A.2.

A.2 Proof of Lemma 2
Let PAK be the result of our pre-analysis under context-sensitivity
K. We show that PAK is equivalent to the least suchX of (6) when
the underlying context selector is K.

To show the equivalence, we first define a new graph and use it
to construct an element X ∈ CK → S] based on the reachability
over this graph. Then, we prove that X is the least solution of (6)
(Lemmas 7 and 8) and PAK is equivalent to X (Lemma 9).

In the below, we spell out the details of constructing X :

1. We define a context-enriched value-flow graph (Ω, ↪→K) with
the node set Ω = CK × Var and the edge set (↪→K) ⊆ Ω× Ω
in Definition 3.

2. Let V be the set of (c, κ)’s reachable from (ι, ε):

V = {(c, κ) | (ι, ε)→∗K (c, κ)}

3. We define a set Ωv of generators for each abstract value v ∈ V:

Ωv = (if (v = >v) then {((ι, ε), x) | x ∈ Var} else {})
∪ {((c, κ), x) | cmd(c) = x := e ∧ const(e) = v}

4. Finally, using what we have defined so far, we construct X ∈
D] = CK → S]:
X (c, κ) = if ((c, κ) 6∈ V) then ⊥

else λx.
⊔
{v ∈ V | ∃((c0, κ0), x0) ∈ Ωv.

(c0, κ0) ∈ V ∧
((c0, κ0), x0) ↪→∗K ((c, κ), x)}

Lemma 7. The X is a solution of (6). That is,

s]I v X (ι, ε) ∧ F](X) v X .

Proof. The first condition holds because, for all x, ((ι, ε), x) be-
longs to Ω>v and (ι, ε) ∈ V . Hence X (ι, ε) = (λx.>v) = >.

Next we show that

∀(c, κ) ∈ CK . F](X)(c, κ) v X (c, κ).

Pick (c, κ) ∈ CK . Suppose that

(c, κ) 6∈ V.
Then, X (c, κ) = ⊥ by the definition of X . Also, for every
(c0, κ0) ∈ CK , if (c0, κ0) →K (c, κ), then (c0, κ0) 6∈ V , which
implies that

X (c0, κ0) = ⊥.
Using these observations, we derive the desired relationship as
follows:

F](X)(c, κ) = Jcmd(c)K(
⊔
{X (c0, κ0) | (c0, κ0)→K (ι, κ)})

= Jcmd(c)K(⊥)

= ⊥
= X (ι, κ).

The third equality holds because JcmdK(⊥) = ⊥ for every cmd.
Let us now consider the case that

(c, κ) ∈ V.
In this case,

X (c, κ) 6= ⊥.
If F](X)(c, κ) = ⊥, the desired relationship follows immediately
from the fact that ⊥ is the least abstract state. Suppose

F](X)(c, κ) 6= ⊥.
We need to show that

∀x ∈ Var. F](X)(c, κ)(x) v X (c, κ)(x).

Pick x ∈ Var. Let v = X (c, κ)(x). Also, define w to be const(e)
if cmd(c) is a command of the form x := e for some expression e;
otherwise, let w = ⊥v . By the definition of X ,

∀v′. ∀((c0, κ0), x0) ∈ Ωv′ .
((c0, κ0) ∈ V ∧ ((c0, κ0), x0) ↪→∗K ((c, κ), x))

=⇒ v′ v v.
This implies two important facts. First,

w v v (21)

because w = ⊥v , or ((c, κ), x) ∈ Ωw and (c, κ) ∈ V . Second,

∀((c0, κ0), x0).
((c0, κ0) ∈ V ∧ ((c0, κ0), x0) ↪→K ((c, κ), x))

=⇒ X (c0, κ0)(x0) v v.
(22)

Meanwhile, by the definitions of F], ↪→K , and the abstract seman-
tics of primitive commands,

F](X)(c, κ)(x) =
w t

⊔
{X (c0, κ0)(x0) | (c0, κ0) ∈ V

∧ ((c0, κ0), x0) ↪→K ((c, κ), x)}.
Hence, from the two facts in (21) and (22) follows that

F](X)(c, κ)(x) v X (c, κ)(x)

as desired.

Lemma 8. The X is a lower bound for every solution of (6). That
is, for every X ∈ D,

(s]I v X(ι, ε) ∧ F](X) v X) =⇒ X v X.

Proof. Consider X ∈ D such that

s]I v X(ι, ε) ∧ F](X) v X.
We have to show that

∀(c, κ) ∈ CK . X (c, κ) v X(c, κ). (23)

First, we show that

∀(c, κ) ∈ V. X(c, κ) 6= ⊥. (24)

Pick (c, κ) ∈ V . By the definition of V ,

(ι, ε)→n
K (c, κ).

for some n ≥ 0. Our proof is by induction on n.

• Base case: n = 0 in this case. Hence, (ι, ε) = (c, κ). Since
s]I v X(ι, ε) by assumption,

X(ι, ε) = > 6= ⊥,
as desired.
• Inductive case: n > 0 in this case. Hence, there exists (c0, κ0)

such that
(ι, ε)→n−1

K (c0, κ0)→K (c, κ).

This implies that (c0, κ0) ∈ V , so by the induction hypothesis,

X(c0, κ0) 6= ⊥.

Let s0 = X(c0, κ0). Since F](X) v X and (c0, κ0) →K

(c, κ),

Jcmd(c)K(s0)

v Jcmd(c)K(
⊔
{X(c1, κ1) | (c1, κ1)→K (c, κ)})

= F](X)(c, κ)

v X(c, κ).

But Jcmd(c)K(s′) = ⊥ holds only if s′ = ⊥. Thus, X(c, κ) 6=
⊥, as desired.

Next, using what we have just proved (i.e., (24)), we prove (23).
Pick (c, κ) ∈ CK . If (c, κ) 6∈ V , then X (c, κ) = ⊥, so the desired
inequality above follows immediately. Otherwise,

X (c, κ) 6= ⊥ ∧ X(c, κ) 6= ⊥,
where the first disequality comes from the definition of X and the
second from (24). Now pick x ∈ Var. Our proof obligation is now
reduced to showing

X (c, κ)(x) v X(c, κ)(x).

This inequality is immediate if X (c, κ)(x) = ⊥v . Suppose that

X (c, κ)(x) 6= ⊥v.
Let v = X (c, κ)(x). Since (c, κ) ∈ V and the domain of abstract
values V is totally ordered, there exist

((c0, κ0), x0), . . . , ((cn, κn), xn)

such that
((c0, κ0), x0) ∈ Ωv ∧ (c0, κ0) ∈ V
∧ (∀0 ≤ i < n. ((ci, κi), xi) ↪→K ((ci+1, κi+1), xi+1))
∧ ((cn, κn), xn) = ((c, κ), x).

(25)

Note that every (ci, κi) is in V . So, by (24),

∀0 ≤ i ≤ n.X(ci, κi) 6= ⊥. (26)

We will show that
v v X(c0, κ0)(x0)
∧ (∀0 ≤ i < n. X(ci, κi)(xi) v X(ci+1, κi+1)(xi+1)).

(27)

Note that this gives the desired relationship v v X(c, κ)(x) be-
cause of the transitivity of v.

The key to show the first conjunct in (27) is to notice that

((c0, κ0) = (ι, ε) ∧ v = >v) ∨
(∃e. cmd(c0) = (x0 := e) ∧ const(e) = v).

If the first disjunct holds, we can use our assumption that

s]I v X(ι, ε)

and derive that

v = >v = s]I(x0) v X(c0, κ0)(x0).

Assume that the disjunct holds. Since X(c0, κ0) 6= ⊥, (c0, κ0) =
(ι, ε) or there exists some (c′0, κ

′
0) such that

(c′0, κ
′
0)→K (c0, κ0) ∧ X(c′0, κ

′
0) 6= ⊥.

Since s]I v X(ι, ε) and F](X) v X , in both cases, we have that

v v X(c0, κ0)(x0).

We now move on to the second conjunct of (27). In this case,
we use a general fact that if

((c′, κ′), x′) ↪→K ((c′′, κ′′), x′′) ∧ X(c′, κ′) 6= ⊥, (28)

then

F](X)(c′′, κ′′) 6= ⊥ ∧ X(c′, κ′)(x′) v F](X)(c′′, κ′′)(x′′).

Since F](X) v X , the second conjunct above implies that

X(c′, κ′)(x′) v X(c′′, κ′′)(x′′).

Hence, the second conjunct of (27) follows if we discharge the
condition (28) for consecutive elements in the sequence

((c0, κ0), x0), . . . , ((cn, κn), xn).

This condition holds because of (25) and (26).

Lemma 9. For every c ∈ C,

PAK(c) =
⊔
κ∈C∗c

X (c, κ).

Proof. Pick c ∈ C. Recall the definition of the set of reachable
nodes C in (7):

C = {c | ∃κ. (ι, ε)→∗K (c, κ)}.
If c 6∈ C, then

∀κ ∈ C∗c . (c, κ) 6∈ V.

Hence, in this case, ⊔
κ∈C∗c

X (c, κ) = ⊥.

But PAK(c) is also ⊥ by the definition of PAK .
Suppose that

c ∈ C.
Let K0 = {κ | (c, κ) ∈ V }. Pick x ∈ Var. We will show

PAK(c)(x) =
⊔
κ∈K0

X (c, κ)(x). (29)

The left hand side of this equation is the join of the set

VL = {v ∈ V | ∃(c0, x0) ∈ Θv. (c0, x0) ↪→†K (c, x)}. (30)

The right hand side of the equation in (29) is the join of the set

VR = {v ∈ V | ∃κ ∈ K0. ∃((c0, κ0), x0) ∈ Ωv.
(c0, κ0) ∈ V ∧
((c0, κ0), x0) ↪→∗K ((c, κ), x)}.

(31)

It suffices to prove that VL = VR. By the definitions of Ωv and Θv ,

(c0, x0) ∈ Θv ⇐⇒ ((c0, κ0), x0) ∈ Ωv.

Hence,

VR = {v ∈ V | ∃(c0, x0) ∈ Θv. ∃κ0. ∃κ ∈ K0.
(c0, κ0) ∈ V ∧
((c0, κ0), x0) ↪→∗K ((c, κ), x)}.

Also, by the definitions of V , K0 and (↪→†K),

(c0, x0) ↪→†K (c, x)

if and only if

∃κ0. ∃κ ∈ K0. (c0, κ0) ∈ V ∧ ((c0, κ0), x0) ↪→∗K ((c, κ), x).

Thus,

VR = {v ∈ V | ∃(c0, x0) ∈ Θv. (c0, x0) ↪→†K (c, x)}.
We have just shown that VR = VL, as desired.

