
User-Guided Program Reasoning using
Bayesian Inference

Mukund Raghothaman∗

University of Pennsylvania, USA
rmukund@cis.upenn.edu

Sulekha Kulkarni∗

University of Pennsylvania, USA
sulekha@cis.upenn.edu

Kihong Heo
University of Pennsylvania, USA

kheo@cis.upenn.edu

Mayur Naik
University of Pennsylvania, USA

mhnaik@cis.upenn.edu

Abstract

Program analyses necessarily make approximations that of-
ten lead them to report true alarms interspersed with many
false alarms. We propose a new approach to leverage user
feedback to guide program analyses towards true alarms and
away from false alarms. Our approach associates each alarm
with a confidence value by performing Bayesian inference
on a probabilistic model derived from the analysis rules. In
each iteration, the user inspects the alarm with the highest
confidence and labels its ground truth, and the approach
recomputes the confidences of the remaining alarms given
this feedback. It thereby maximizes the return on the effort
by the user in inspecting each alarm. We have implemented
our approach in a tool named Bingo for program analyses
expressed in Datalog. Experiments with real users and two
sophisticated analysesÐa static datarace analysis for Java
programs and a static taint analysis for Android appsÐshow
significant improvements on a range of metrics, including
false alarm rates and number of bugs found.
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1 Introduction

Diverse forms of program reasoning, including program
logics, static analyses, and type systems, all rely on logi-
cal modes of deriving facts about programs. However, due
to classical reasons such as undecidability and practical con-
siderations such as scalability, program reasoning tools are
limited in their ability to accurately deduce properties of
the analyzed program. When the user finally examines the
tool output to identify true alarms, i.e. properties which the
program actually fails to satisfy, her experience is impaired
by the large number of false alarms, i.e. properties which the
tool is simply unable to prove.

It is well-known that alarms produced by program reason-
ing tools are correlated: multiple true alarms often share root
causes, and multiple false alarms are often caused by the tool
being unable to prove some shared intermediate fact about
the analyzed program. This raises the possibility of lever-
aging user feedback to suppress false alarms and increase
the fraction of true alarms presented to the user. Indeed, a
large body of previous research is aimed at alarm cluster-
ing [35, 36], ranking [30, 31], and classification [25, 41, 61].

In this paper, we fundamentally extend program analyses
comprising logical rules with probabilistic modes of reason-
ing. We do this by quantifying the incompleteness of each
deduction rule with a probability, which represents our belief
that the rule produces invalid conclusions despite having
valid hypotheses. Instead of just a set of alarm reports, we
now additionally obtain confidence scores which measure our
belief that the alarm represents a real bug. Furthermore, we
are able to consistently update beliefs in response to new
information obtained by user feedback. By intelligently se-
lecting reports to present to the user for inspection, and by
incorporating user feedback in future iterations, we have the
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potential to greatly improve the practical utility of program
reasoning tools.
We concretize these ideas in the context of analyses ex-

pressed in Datalog, a logic programming language which is
increasingly used to declaratively specify complex program
analyses [2, 3, 7, 40, 56, 60]. Inspired by the literature on prob-
abilistic databases [11, 18], we develop a technique to convert
Datalog derivation graphs into Bayesian networks. Com-
puting alarm confidences can then be seen as performing
marginal inference to determine the posterior probabilities
of individual alarms conditioned on user feedback. By em-
bedding the belief computation directly into the derivation
graph, our technique exploits correlations between alarms
at a much finer granularity than previous approaches.
We have implemented our technique in a tool named

Bingo and evaluate it using two state-of-the-art analyses: a
static datarace analysis [49] on a suite of 8 Java programs
each comprising 95ś616 KLOC, and a static taint analy-
sis [15] on a suite of 8 Android apps each comprising 40ś
98 KLOC. We compare Bingo to two baselines: a random
ranker, Base-R, in which the user inspects each alarm with
uniform probability, and a ranker based on a sophisticated
alarm classification system [41], Base-C. On average, to dis-
cover all true alarms, the user needs to inspect 58.5% fewer
alarms with Bingo compared to Base-R, and 44.2% fewer
alarms compared to Base-C. We also conduct a user study
with 21 Java programmers and confirm that small amounts of
incorrect user feedback do not significantly affect the quality
of the ranking, or overly suppress the remaining true alarms.

In summary, this paper makes the following contributions:

• A systematic methodology to view Datalog derivation
graphs as Bayesian networks and thereby attach confi-
dence scores, i.e. beliefs, to individual alarms, and update
these values based on new user feedback.
• A framework to rank of program analysis alarms based
on user feedback. While we principally target analyses
expressed in Datalog, the approach is extendable to any
analysis algorithm written in a deductive style.
• Theoretical analysis showing that, assuming a probabilistic
model of alarm creation, marginal probabilities provide
the best way to rank alarms.
• Empirical evaluation with realistic analyses on large pro-
grams and a user study showing that Bingo significantly
outperforms existing approaches on a range of metrics.

2 Motivating Example

Consider the Java program in Figure 1, adapted from the
open-source Apache FTP Server. The program creates a new
RequestHandler thread for each connection, and concur-
rently runs a TimerThread in the background to clean up idle
connections. Multiple threads may simultaneously call the
getRequest() and close() methods (from lines 26 and 48),

and different threads may also simultaneously call close()
(from lines 28 and 48).

Dataraces are a common and insidious kind of error that
plague multi-threaded programs. Since getRequest() and
close()may be called on the same RequestHandler object
by different threads in parallel, there exists a datarace be-
tween the lines labelled L0 and L7: the first thread may read
the request field while the second thread concurrently sets
the request field to null.

On the other hand, even though the close()method may
also be simultaneously invoked by multiple threads on the
same RequestHandler object, the atomic test-and-set oper-
ation on lines L1śL3 ensures that for each object instance,
lines L4śL7 are executed at most once. There is therefore
no datarace between the pair of accesses to controlSocket
on lines L4 and L5, and similarly no datarace between the
accesses to request (lines L6 and L7).

We may use a static analysis to find dataraces in this pro-
gram. However, due to the undecidable nature of the problem,
the analysis may also report alarms on lines L4śL7. In the rest
of this section, we illustrate how Bingo generalizes from user
feedback to guide the analysis away from the false positives
and towards the actual datarace.

2.1 A Static Datarace Analysis

Figure 2 shows a simplified version of the analysis in Chord, a
static datarace detector for Java programs [49]. The analysis
is expressed in Datalog as a set of logical rules over relations.
The analysis takes the relations N(p1,p2), U(p1,p2), and

A(p1,p2) as input, and produces the relations P(p1,p2) and
race(p1,p2) as output. In all relations, variables p1 and p2
range over the domain of program points. Each relation may
be visualized as the set of tuples indicating some known
facts about the program. For example, for the program in Fig-
ure 1, N(p1,p2) may contain the tuples N(L1, L2), N(L2, L3),
etc. While some input relations, such as N(p1,p2), may be
directly obtained from the text of the program being ana-
lyzed, other input relations, such as U(p1,p2) or A(p1,p2),
may themselves be the result of earlier analyses (in this case,
a lockset analysis and a pointer analysis, respectively).

The rules are intended to be read from right-to-left, with
all variables universally quantified, and the :− operator inter-
preted as implication. For example, the rule r1 may be read
as saying, łFor all program points p1, p2, p3, if p1 and p2 may
execute in parallel (P(p1,p2)), and p3 may be executed imme-
diately after p2 (N(p2,p3)), and p1 and p3 are not guarded by
a common lock (U(p1,p3)), then p1 and p3 may themselves
execute in parallel.ž

Observe that the analysis is flow-sensitive, i.e. it takes into
account the order of program statements, represented by
the relation N(p1,p2), but path-insensitive, i.e. it disregards
the satisfiability of path conditions and predicates along
branches. This is an example of an approximation to enable
the analysis to scale to large programs.
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1 public class FTPServer {

2 public static void main(String args[]) {

3 List<RequestHander> conList = new ArrayList<RequestHander>();

4 ServerSocket serverSocket = new ServerSocket(...);

5

6 // Start timer thread

7 TimerTask timerTask = new TimerTask(conList);

8 timerTask.start();

9

10 while (true) {

11 Socket socket = serverSocket.accept();

12 RequestHander connection = new RequestHandler(socket);

13 conList.add(connection);

14 // Start connection thread

15 connection.start();

16 }

17 }

18 }

19

20 class TimerTask extends Thread {

21 private List<RequestHandler> conList;

22 public TimerTask(List<RequestHandler> list) { conList = list; }

23 public void run() {

24 while (true) {

25 for (RequestHandler connection : conList) {

26 FtpRequest r = connection.getRequest();

27 if (r != null && r.idleTime > ...)

28 connection.close();

29 }

30 }

31 }

32 }

34 class RequestHandler extends Thread {

35 private FtpRequest request;

36 private Socket controlSocket;

37 private boolean isConnectionClosed = false;

38

39 public RequestHandler (Socket socket) {

40 request = new FtpRequest();

41 controlSocket = socket;

42 }

43

44 public void run() {

45 while (...) {

46 ... // Do something

47 }

48 close();

49 }

50

51 public FtpRequest getRequest() {

52 return request; // L0

53 }

54

55 public void close() {

56 synchronized (this) { // L1

57 if (isConnectionClosed) return; // L2

58 isConnectionClosed = true; // L3

59 }

60 controlSocket.close(); // L4

61 controlSocket = null; // L5

62 request.clear(); // L6

63 request = null; // L7

64 }

65 }

Figure 1. Code fragment of an example Java program.

Input relations

N(p1,p2) : Program point p2 may be executed immediately

after program point p1 by a thread

U(p1,p2) : Program points p1 and p2 are not guarded by a

common lock

A(p1,p2) : Program points p1 and p2 may access the same

memory location

Output relations

P(p1,p2) : Program points p1 and p2 may be executed by

different threads in parallel

race(p1,p2) : Program points p1 and p2 may have a datarace

Analysis rules

r1 : P(p1,p3) :− P(p1,p2),N(p2,p3),U(p1,p3).

r2 : P(p2,p1) :− P(p1,p2).

r3 : race(p1,p2) :− P(p1,p2),A(p1,p2).

Figure 2. A simple static datarace analysis in Datalog. We
have elided several parts of the analysis, such as the recogni-
tion of thread starts and the base case of the P(p1,p2) relation.

2.2 Applying the Analysis to a Program

To apply the analysis of Figure 2 to the program in Figure 1,
one starts with the set of input tuples, and repeatedly applies
the inference rules r1, r2, and r3, until no new facts can be
derived. Starting with the tuple P(L4, L2), we show a portion
of the derivation graph thus obtained in Figure 3. Each box

represents a tuple, and is shaded gray if it is an input tu-
ple. Nodes identified with rule names represent grounded
clauses: for example, the node r1 (L4, L2, L3) indicates the
łgrounded instancež of the rule r1 with p1 = L4, p2 = L2, and
p3 = L3. This clause takes as hypotheses the tuples P(L4, L2),
N(L2, L3), and U(L4, L3), and derives the conclusion P(L4, L3),
and the arrows represent these dependencies.
Observe that clause nodes are conjunctive: a rule fires

iff all of its antecedents are derivable. On the other hand,
consider another portion of the derivation graph in Figure 4.
The tuple P(L6, L7) can be derived in one of two ways: either
by instantiating r1 with p1 = L6, p2 = L6, and p3 = L7, or by
instantiating r2 with p1 = L7 and p2 = L6. Tuple nodes are
therefore disjunctive: a tuple is derivable iff there exists at
least one derivable clause of which it is the conclusion.
Observe that lines L4 and L2 can indeed execute in par-

allel, and the original conclusion P(L4, L2), in Figure 3, is
true. However, the subsequent conclusion P(L4, L3) is spuri-
ous, and is caused by the analysis being incomplete: the sec-
ond thread to enter the synchronized block will necessarily
leave the method at line L2. Four subsequent false alarmsÐ
race(L4, L5), race(L5, L5), race(L6, L7), and race(L7, L7)Ðall
result from the analysis incorrectly concluding P(L4, L3).
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P(L4, L2) N(L2, L3) U(L4, L3)

r1 (L4, L2, L3)

P(L4, L3) N(L3, L4) U(L4, L4)

r1 (L4, L3, L4)

P(L4, L4) N(L4, L5) U(L4, L5)

r1 (L4, L4, L5)

P(L4, L5) N(L5, L6) U(L4, L6)

r1 (L4, L5, L6)

P(L4, L6)

r2 (L4, L6)

P(L6, L4)N(L4, L5)U(L6, L5)

r1 (L6, L4, L5)

P(L6, L5)N(L5, L6)U(L6, L6)

r1 (L6, L5, L6)

P(L6, L6)N(L6, L7)U(L6, L7)

r1 (L6, L6, L7)

P(L6, L7)

A(L4, L5)

r3 (L4, L5)

race(L4, L5)

A(L6, L7)

r3 (L6, L7)

race(L6, L7)

Figure 3. Portion of the derivation graph obtained by apply-
ing the static datarace analysis to the program in Figure 1.
The central question of this paper is the following: if the user
identifies race(L4, L5) as a false alarm, then how should this
affect our confidence in the remaining conclusions?

2.3 Quantifying Incompleteness Using Probabilities

Incomplete analysis rules are the principal cause of false
alarms: even though P(L4, L2), N(L2, L3) and U(L4, L3) are all
true, it is not the case that P(L4, L3). Bingo addresses this
problem by relaxing the interpretation of clause nodes, and
only treating them probabilistically:

Pr(r1 (L4, L2, L3) | h1) = 0.95, and (1)

Pr(¬r1 (L4, L2, L3) | h1) = 1 − 0.95 = 0.05, (2)

where h1 = P(L4, L2) ∧ N(L2, L3) ∧ U(L4, L3) is the event
indicating that all the hypotheses of r1 (L4, L2, L3) are true,
and p1 = 0.95 is the probability of the clause łcorrectly
firingž. By setting p1 to a value strictly less than 1, we make
it possible for the conclusion of r1 (L4, L2, L3), P(L4, L3) to still
be false, even though all the hypotheses h1 hold.
In this new setup, as before, if any of the antecedents of

r1 (L4, L2, L3) is false, then it is itself definitely false:

Pr(r1 (L4, L2, L3) | ¬h1) = 0, and (3)

Pr(¬r1 (L4, L2, L3) | ¬h1) = 1. (4)

We also continue to treat tuple nodes as regular disjunctions:

Pr(P(L6, L7) | r1 (L6, L6, L7) ∨ r2 (L7, L6)) = 1, (5)

Pr(P(L6, L7) | ¬(r1 (L6, L6, L7) ∨ r2 (L7, L6))) = 0, (6)

and treat all input tuples t as being known with certainty:
Pr(t ) = 1.
We discuss how to learn these rule probabilities in Sec-

tion 3.3. For now, we associate the rule r3 with firing prob-
ability p3 = 0.95, and r2 with probability p2 = 1. Finally, to
simplify the discussion, we treat P(L0, L1) and P(L1, L1) as in-
put facts, with Pr(P(L0, L1)) = 0.40 and Pr(P(L1, L1)) = 0.60.

2.4 From Derivation Graphs to Bayesian Networks

By attaching conditional probability distributions (CPDs)
such as equations 1ś6 to each node of Figure 3, Bingo views
the derivation graph as a Bayesian network. Specifically,
Bingo performs marginal inference on the network to asso-
ciate each alarm with the probability, or belief, that it is a true
datarace. This procedure generates a list of alarms ranked
by probability, shown in Table 1a. For example, it computes
the probability of race(L4, L5) as follows:

Pr(race(L4, L5)) = Pr(race(L4, L5) ∧ r3 (L4, L5))

+ Pr(race(L4, L5) ∧ ¬r3 (L4, L5))

= Pr(race(L4, L5) ∧ r3 (L4, L5))

= Pr(race(L4, L5) | r3 (L4, L5)) · Pr(r3 (L4, L5))

= Pr(r3 (L4, L5) | P(L4, L5) ∧ A(L4, L5))

· Pr(P(L4, L5)) · Pr(A(L4, L5))

= 0.95 · Pr(P(L4, L5)) = 0.954 · Pr(P(L4, L2))

= 0.958 · Pr(P(L1, L1)) = 0.398.

The user now inspects the top-ranked report, race(L4, L5),
and classifies it as a false alarm. The key idea underlying
Bingo is that generalizing from feedback is condition-

ing on evidence. By replacing the prior belief Pr(a), for
each alarm a, with the posterior belief, Pr(a | ¬ race(L4, L5)),
Bingo effectively propagates the user feedback to the remain-
ing conclusions of the analysis. This results in the updated
list of alarms shown in Table 1b. Observe that the belief in
the closely related alarm race(L6, L7) drops from 0.324 to
0.030, while the belief in the unrelated alarm race(L0, L7)
remains unchanged at 0.279. As a result, the entire family
of false alarms drops in the ranking, so that the only true
datarace is now at the top.

The computation of the updated confidence values occurs
by a similar procedure as before. For example:

Pr(race(L6, L7) | ¬ race(L4, L5))

= Pr(race(L6, L7) ∧ P(L4, L5) | ¬ race(L4, L5))

+ Pr(race(L6, L7) ∧ ¬ P(L4, L5) | ¬ race(L4, L5))

= Pr(race(L6, L7) ∧ P(L4, L5) | ¬ race(L4, L5)).

Next, race(L4, L5) and race(L6, L7) are conditionally indepen-
dent given P(L4, L5) as it occurs on the unique path between
them. So,

Pr(race(L6, L7) ∧ P(L4, L5) | ¬ race(L4, L5))

= Pr(race(L6, L7) | P(L4, L5)) · Pr(P(L4, L5) | ¬ race(L4, L5))
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P(L6, L6) N(L6, L7) U(L6, L7)

r1 (L6, L6, L7)

P(L6, L7)

P(L7, L6)

r2 (L7, L6)

Figure 4. Another portion of the derivation graph showing
multiple ways of deriving the tuple P(L6, L7).

= 0.955 · Pr(P(L4, L5) | ¬ race(L4, L5)).

Finally, by Bayes’ rule, we have:

Pr(P(L4, L5) | ¬ race(L4, L5))

=

Pr(¬ race(L4, L5) | P(L4, L5)) · Pr(P(L4, L5))

Pr(¬ race(L4, L5))

=

0.05 · 0.957 · 0.60

0.60
= 0.03.

Our prior belief in P(L4, L5) was Pr(P(L4, L5)) = 0.42, so that
Pr(P(L4, L5) | ¬ race(L4, L5)) ≪ Pr(P(L4, L5)), but is still
strictly greater than 0. This is because one eventuality by
which ¬ race(L4, L5) may occur is for P(L4, L5) to be true, but
for the clause r3 (L4, L5) to misfire. We may now conclude
that Pr(race(L6, L7) | ¬ race(L4, L5)) = 0.955 · 0.03 = 0.030.

2.5 The Interaction Model

In summary, given an analysis and a program to be analyzed,
Bingo takes as input the set of tuples and grounded clauses
produced by the Datalog solver at fixpoint, and constructs
the belief network. Next, it performs Bayesian inference to
compute the probability of each alarm, and presents the
alarm with highest probability for inspection by the user.
The user then indicates its ground truth, and Bingo incor-
porates this feedback as evidence for subsequent iterations.
We summarize this process in Figure 5.

There are several possible stopping criteria by which the
user could cease interaction. She could choose to only inspect
alarms with confidence higher than some threshold p0, and
stop once the confidence of the highest ranked alarm drops
below p0. Alternatively, she could choose to only inspect n
alarms, and stop after n iterations. Of course, in all these sit-
uations, we would lose any soundness guarantees provided
by the underlying analysis, but given the large number of
alarms typically emitted by analysis tools and the time con-
straints frequently placed on developers, and as evidenced
by our experiments in Section 5, Bingo promises to form a
valuable component of the quality control toolchain.

3 Framework for Bayesian Inference

We formally describe the workflow of the previous section
in Algorithm 1. We use an off-the-shelf solver [45] for the
conditional probability queries in step 7(b). In this section
and the next, we discuss the main technical ideas in our
paper, spanning lines 3ś5.

Algorithm 1 Bingo(D, P ,p), where D is the analysis ex-
pressed in Datalog, P is the program to be analyzed, and p
maps each analysis rule r to its firing probability pr .

1. Let I = InputRelationsD (P ). Populate all input relations
I using the program text and prior analysis results.

2. Let (C,A,GC ) = DatalogSolve(D, I ). C is the set of out-
put tuples, A ⊆ C is the set of alarms produced, andGC is
the set of grounded clauses.

3. Compute GCc ≔ CycleElim(I ,GC ). Eliminate cycles
from the grounded constraints.

4. (Optionally,) UpdateGCc ≔ Optimize(I ,GCc ,A). Reduce
the size of the set of grounded constraints.

5. Construct Bayesian network BN from GCc and p, and let
Pr be its joint probability distribution.

6. Initialize the feedback set e ≔ ∅.
7. While there exists an unlabelled alarm:
a. Let Au = A \ e be the set of all unlabelled alarms.
b. Determine the top-ranked unlabelled alarm:

at = argmax
a∈Au

Pr(a | e ).

c. Presentat for inspection. If the user labels it a true alarm,
update e ≔ e ∪ {at }. Otherwise, update e ≔ e ∪ {¬at }.

3.1 Preliminaries

We begin this section by briefly recapping the semantics of
Datalog and Bayesian networks. For a more detailed treat-
ment, we refer the reader to [1] and [29].

Datalog. We fix a collection {R, S,T , . . .} of relations. Each
relationR has an arityk , and is a set of tuplesR (v1,v2, . . . ,vk ),
where the atoms v1,v2, . . . ,vk are drawn from appropriate
domains. Examples include the relations P (łmay happen in
parallelž), N (łmay execute afterž), and A (łmay aliasž) from
Figure 2. The analyst divides these into input and output re-
lations, and specifies the computation of the output relations
using a set of rules, each of which is of the form:

Rh (uh ) :− R1 (u1),R2 (u2), . . . ,Rp (up ),

where Rh is an output relation, and uh , u1, u2, . . . , up are free
tuples. Examples include rules r1, r2, and r3 in Figure 2. As
mentioned before, each rule may be read as a universally
quantified formula: łFor all valuationsu of the free variables,
if R1 (u1), and R2 (u2), . . . , and Rp (up ), then Rh (uh )ž.
Instantiating the free variables of a rule yields a Horn

clause,R1 (v1)∧R2 (v2)∧· · ·∧Rp (vp ) =⇒ Rh (vh ). For exam-
ple, the constraint r1 (L4, L2, L3) from Figure 3 represents the
Horn clause P(L4, L2) ∧ N(L2, L3) ∧ U(L4, L3) =⇒ P(L4, L3).

To solve a Datalog program, we accumulate the grounded
constraints until fixpoint. Given a valuation I of all input
relations, we initialize the set of conclusions, C ≔ I , and
initialize the grounded constraints to the set of input tuples,
GC ≔ {True =⇒ t | t ∈ I }. We repeatedly apply each
rule to update C and GC until no new conclusions can be
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Table 1. List of alarms produced by Bingo, (a) before, and (b) after the feedback ¬ race(L4, L5). Observe how the real datarace
race(L0, L7) rises in the ranking as a result of feedback.

(a) Pr(a).

Rank Belief Program points

1 0.398 RequestHandler : L4, RequestHandler : L5

2 0.378 RequestHandler : L5, RequestHandler : L5

3 0.324 RequestHandler : L6, RequestHandler : L7

4 0.308 RequestHandler : L7, RequestHandler : L7

5 0.279 RequestHandler : L0, RequestHandler : L7

(b) Pr(a | ¬ race(L4, L5)).

Rank Belief Program points

1 0.279 RequestHandler : L0, RequestHandler : L7

2 0.035 RequestHandler : L5, RequestHandler : L5
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Figure 5. The Bingo workflow and interaction model.

reached. That is, whenever R1 (v1), R2 (v2), . . . , Rp (vp ) occur
inC , we updateC ≔ C∪{Rh (vh )}, andGC ≔ GC∪{R1 (v1)∧

R2 (v2) ∧ · · · ∧ Rp (vp ) =⇒ Rh (uh )}.

Bayesian networks. We will only consider boolean-valued
random variables, and specialize our definition for this pur-
pose. Fix a set of random variables V , and a directed acyclic
graph G = (V ,E) with the random variablesV as its vertices.
Given v ∈ V , we write Pa(v ) for the set of variables with
edges leading to v . Formally,

Pa(v ) = {u ∈ V | u → v ∈ E}.

The conditional probability distribution (CPD) of a random
variable v is a function which maps concrete valuations
xPa(v ) of Pa(v ) to the conditional probability of the event
v = True, and we write this as p (v | xPa(v ) ). Naturally, the
complementary event v = False has conditional probability
p (¬v | xPa(v ) ) = 1 − p (v | xPa(v ) ). The Bayesian network,
given by the triple BN = (V ,G,p), is essentially a compact
representation of the following joint probability distribution:

Pr(x ) =
∏

v

p (xv | xPa(v ) ), (7)

where the joint assignmentx is a valuation xv for eachv ∈ V ,
and xPa(v ) is the valuation restricted to the parents ofv . From
Equation 7, wemay readily define other quantities of interest,
including the marginal probability of a variable, Pr(v ) =∑
{x |xv=True} Pr(x ), Pr(¬v ) = 1 − Pr(v ), and the conditional

probability of arbitrary events: Pr(v | e ) = Pr(v ∧e )/Pr(e ).

P(L6, L7)

r2 (L6, L7)

r2 (L7, L6)

P(L7, L6)

r1 (L6, L6, L7) r1 (L7, L5, L6)

Figure 6. An example of a cycle in the derivation graph.

3.2 From Derivation Graphs to Bayesian Networks

The set of conclusions C and the grounded clauses GC from
a Datalog program at fixpoint naturally induce a graph
G (C,GC ) over the vertices C ∪ GC , with an edge from a
tuple t ∈ C to a clause д ∈ GC whenever t is an antecedent
of д, and an edge from д to t whenever t is the conclusion
of д. We have already seen portions of this graph in Figures 3
and 4. Our goal is to view this graph as a Bayesian network,
with each vertex v ∈ C ∪GC as a random variable, and by
attaching CPDs such as those in Equations 1ś 6 to each node.
Observe however, that while the underlying graph of the
Bayesian network is required to be acyclic, the derivation
graph may have cycles, such as that shown in Figure 6.
We therefore choose a subset GCc ⊆ GC of clauses such

that the induced graph is acyclic. We require that GCc still
derive every alarm a ∈ A originally produced by the analy-
sis, and that the cycle elimination algorithm scale to the fix-
points produced by large programs (≈ 1ś10 million grounded
clauses). While we would likeGCc to be maximal, to capture
as many correlations between alarms as possible, finding the
largest GCc which induces an acyclic graph G (C,GCc ) can
be shown to be NP-complete by reduction from the maxi-

mum acyclic subgraph problem [19]. We therefore relax the
maximality requirement forGCc , and use a modified version
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of the naive Datalog evaluator shown in Algorithm 2 as an
efficient cycle elimination algorithm. The following theorem,
proved in Appendix A, states that CycleElim(I ,GC ) satisfies
the desired requirements:

Theorem 3.1. For all I andGC , ifGCc = CycleElim(I ,GC ),

then (a) GCc ⊆ GC , (b) every tuple derivable using GC is also

derivable using GCc , and (c) G (C,GCc ) is acyclic.

Algorithm 2 CycleElim(I ,GC ), where I is the set of all
input tuples, and GC is a set of grounded constraints.

1. Initialize the timestamp map T , such that for each tuple t ,
if t ∈ I , T (t ) = 0, and otherwise, T (t ) = ∞.

2. Given a grounded clause д, let Aд be the set of all its
antecedents, and let cд be its consequent.

3. While there exists a constraint д such that

T (cд ) > max
a∈Aд

(T (a)) + 1, update:

T (cд ) ≔ max
a∈Aд

(T (a)) + 1. (8)

4. Define GCc = {д ∈ GC | T (cд ) > maxa∈Aд (T (a))}.
GCc ⊆ GC is the set of all those constraints in GC whose
consequent has a timestamp strictly greater than all of its
antecedents. Return GCc .

3.3 Learning Rule Firing Probabilities

Given a program P and an analysis D, the Bayesian network
of the previous section is parameterized by the vector of rule
probabilities, p. To emphasize this dependence, we write Prp
for the induced joint probability distribution.

We will now discuss how we may obtain p. With a corpus
of fully labelled data, the rule probability is simply the frac-
tion of times the rule produces incorrect conclusions from
true hypotheses. With a less extensively labelled dataset, one
faces the challenge of latent (or unobserved) variables, which
can be solved with the expectation maximization (EM) algo-
rithm described below. However, both of these techniques
require a large corpus, and a proper experimental evaluation
involves partitioning the data into training and test sets. To
avoid this problem in our experiments, we uniformly assign
each rule to a probability of 0.999.

The maximum likelihood estimator (MLE). For a train-
ing program and its associated ground truthv , our learning
problem is to determine the łbestž weight vector p which ex-
plainsv . One common measure of goodness is the likelihood,
L(p;v ), which may be informally motivated as the plausi-
bility of p given the training data v . Concretely, L(p;v ) =
Prp (v ). To łlearnž the rule firing probabilities is to then find
the probability vector p̃ with highest likelihood:

p̃ = argmax
p

L(p;v ). (9)

MLE by expectation maximization (EM). In our setting,
MLEmay be performed by a straightforward implementation

of the EM algorithm [29]. Starting with an arbitrary seedp (0) ,
the algorithm iteratively computes a sequence of estimates

p
(0) , p (1) , p (2) , . . . , as follows:

p
(t+1)
r =

∑
дr Prp (t ) (cдr ∧Aдr )∑

дr Prp (t ) (Aдr )
, (10)

where дr ranges over all grounded clauses associated with

r . The algorithm guarantees that L(p (t ) ;v ) monotonically
increases with t , which is also bounded above by 1, so that
the procedure converges to a local maximum in practice.

3.4 Alarm Ranking in an Ideal Setting

We now consider some theoretical properties of the alarm
ranking problem.We begin with the following question:How
good is an ordering of alarms, w = a1,a2, . . . ,an , in light of

their associated ground truths, v1, v2, . . . , vn?

We use the number of inversions as a measure of ranking
quality. A pair of alarms (ai ,aj ) from w forms an inver-
sion if ai appears before aj , but ai is false and aj is true,
i.e. i < j ∧ ¬vi ∧ vj . The ranker incurs a penalty for each
inversion, because it has presented a false alarm before a real
bug. Well ordered sequences of alarms usually have fewer
inversions than poorly ordered sequences. We write χ (w )

for the number of inversions inw .
Assume now that Pr(·) describes the joint probability dis-

tribution of alarms. We seek the ordering of alarms with
lowest expected inversion count. Two versions of this prob-
lemwhich are relevant in our setting: (a) alarm ranking given
a fixed set of observations e , and (b) alarm ranking in the
interactive setting, where e grows with each iteration. The
following theorem, which we prove in Appendix A, states
that Bingo-style ranking is optimal for the first problem.

Theorem 3.2. For each set of observations e , the sequence

w = a1,a2, . . . ,an of alarms, arranged according to decreasing

Pr(ai | e ), has the minimum expected inversion count over all

potential orderingsw ′.

The second problem involves finding an optimal strategy
in a Markov decision process [54] with O ((n + 1)!) states.
Bingomay be viewed as employing a greedy heuristic in this
process, and we plan to investigate this significantly more
challenging problem in future work.

4 Implementation

The central computational component of Bingo is the condi-
tional probability query Pr(a | e ) in step 7(b) of Algorithm 1.
We discharge these queries using the loopy belief propaga-
tion algorithm implemented in LibDAI [45]. Step 4 of Algo-
rithm 1 is the result of combining the two optimizations we
will now describe. We discuss additional engineering details
involving the belief propagation algorithm in Appendix B.
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Co-reachability based constraint pruning. While the so-
lution to the Datalog program at fixpoint contains all deriv-
able tuples, not all of these tuples are useful in the production
of alarms. Therefore, our first optimization is to remove un-
necessary tuples and clauses by performing a backward pass
over GC . We initialize the set of useful tuples U ≔ A, and
repeatedly perform the following update until fixpoint:

U ≔ U ∪ {t | ∃д ∈ GC s.t. t ∈ Aд and cд ∈ U }.

Recall, from Algorithm 2, that we write cд for the conclusion
of a grounded clauseд, andAд for the set of all its antecedents.
Informally, a tuple is useful if it is either itself an alarm, or can
be used to produce a useful tuple. The pruned set of clauses
may finally be defined as follows: GC ′ = {д ∈ GC | cд ∈ U }.

Chain compression. Consider the derivation graph shown
in Figure 3, and observe the sequence of tuples P(L4, L2) →
P(L4, L3) → P(L4, L4) → P(L4, L5). Both intermediate tuples
P(L4, L3) and P(L4, L4) are produced by exactly one grounded
clause, and are consumed as an antecedent by exactly one
clause. Furthermore, since neither of them is an alarm node,
we will never solicit feedback from the user about these
tuples. We may therefore rewrite the derivation graph to
directly conclude P(L4, L2) → P(L4, L5).

We formally present this optimization in Algorithm 3. The
rewriting is essentially an eager application of the standard
variable elimination procedure for Bayesian networks.

Algorithm 3 Compress(GC,C,A), where GC is the set of
grounded constraints, C is the set of conclusions, and A is
the set of alarms produced by the analysis.

1. For each tuple t , define:

Srcs(t ) ≔ {д ∈ GC | t = cд },

Sinks(t ) ≔ {д ∈ GC | t ∈ Aд }.

2. Construct the following set:

E ≔ {t ∈ C \A | | Srcs(t ) | = 1 ∧ | Sinks(t ) | = 1}.

3. While E is not empty:
a. Pick an arbitrary tuple t ∈ E, and let Srcs(t ) = {д1},

and Sinks(t ) = {д2}.
b. Since t = cд1 and t s an antecedent of д2, let

д1 = a1 ∧ a2 ∧ · · · ∧ ak =⇒ t , and

д2 = t ∧ b1 ∧ b2 ∧ . . .bp =⇒ t ′.

c. Define a new clause, д′ = a1 ∧ a2 ∧ · · · ∧ ak ∧ b1 ∧ b2 ∧

· · · ∧ bp =⇒ t ′. Update GC ≔ GC ∪ {д′} \ {д1,д2},
E ≔ E \ {t }, and recompute Srcs and Sinks.

d. If д1 was associated with rule r1 with probability p1, and
д2 was associated with rule r2 with probability p2, then
associate д′ with a new rule r ′ with probability p1p2.

4. Return GC .

Table 2. Statistics of the instance analyses.

Analysis Rules Input relations Output relations

Datarace 102 58 44

Taint 62 52 25

5 Experimental Evaluation

Our evaluation seeks to answer the following questions:

Q1. How effective is Bingo at ranking alarms?
Q2. Can Bingo help in discovering new bugs missed by

existing precise analysis tools?
Q3. How robust is the ranking produced by Bingo and

how adversely is it affected by incorrect responses?
Q4. Does Bingo scale to large programs and how effective

are the optimizations it employs?

We describe our experimental setup in Section 5.1, then
discuss each of the above questions in Sections 5.2ś5.5, and
outline limitations of our approach in Section 5.6.

5.1 Experimental Setup

We conducted all our experiments on Linux machines with
3.0 GHz processors and 64 GB RAM running Oracle HotSpot
JVM 1.6 and LibDAI version 0.3.2. We set a timeout of 2 hours
per alarm proposed for both Bingo and the baselines.

5.1.1 Instance Analyses

We summarize the key statistics of our instance analyses in
Table 2, and describe them here in more detail.

Datarace analysis. The datarace analysis [49] is built atop
the Chord framework [48]. It combines thread-escape, may-
happen-in-parallel, and lockset analyses that are flow-and-
context sensitive. They build upon call-graph and aliasing
information obtained from a 3-context-and-object sensitive
but flow-insensitive pointer analysis [42]. The analysis is
intended to be soundy [39], i.e. sound with the exception
of some difficult features of Java, including exceptions and
reflection (which is resolved by a dynamic analysis [6]).

Taint analysis. The taint analysis [15] is built atop the Soot
framework [59]. The variables of the analyzed program are
associated with source and sink annotations, depending on
whether it could contain data originating from a sensitive
source or data that eventually flows to an untrusted sink,
respectively. The analysis uses call-graph and aliasing infor-
mation from a similar pointer analysis as before [42].

5.1.2 Benchmarks

We evaluated Bingo on the suite of 16 benchmarks shown in
Table 3. The first four datarace benchmarks are commonly
used in previous work [13, 61], while we chose the remaining
four from the DaCapo suite [4], and obtained the ground
truth by manual inspection. The eight taint analysis bench-
marks were chosen from the STAMP [15] repository, and are
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a combination of apps provided by a major security company,
and challenge problems used in past research.

5.1.3 Baseline Ranking Algorithms

We compare Bingo to two baseline algorithms, Base-R and
Base-C. In each iteration, Base-R chooses an alarm for in-
spection uniformly at random from the pool of unlabelled
alarms. Base-C is based on the alarm classifier Eugene [41].
We describe its operation in Appendix C.

5.1.4 User Study

To answer Q3, we conducted a user study to measure the
fraction of alarms mislabelled by professional programmers.
We placed an advertisement on upwork.com, an online portal
for freelance programmers. We presented respondents with
a tutorial on dataraces, and gave them a small 5-question
test based on a program similar to that in Figure 1. Based
on their performance in the test, we chose 21 of the 27 re-
spondents, and assigned each of these developers to one of
the benchmarks, hedc, ftp, weblech, and jspider. We gave
them 20 alarms for labelling with an 8ś10 hour time limit,
such that each alarm was inspected by at least 5 indepen-
dent programmers. To encourage thoughtful answers, we
also asked them to provide simple explanations with their re-
sponses.We found that, for 90% of the questions, the majority
vote among the responses resulted in the correct label.

5.2 Effectiveness of Ranking

One immediate way to measure the effectiveness of Bingo is
to determine the rank at which the last true alarm is discov-
ered. We present these statistics in Table 4. For example, the
datarace analysis produces 522 alarms on ftp, of which 75

are real dataraces. Bingo presents all true alarms for inspec-
tion within just 103 rounds of interaction, compared to 368

for Base-C, and 520 for Base-R. Another notable example is
luindex from the DaCapo suite, on which the analysis pro-
duces 940 alarms. Of these alarms, only 2 are real dataraces,
and Bingo reports both bugs within just 14 rounds of interac-
tion, compared to 101 for Base-C and 587 for Base-R. Over all
benchmarks, on average, the user needs to inspect 44.2% and
58.5% fewer alarms than Base-C and Base-R respectively.

On the other hand, the last true alarm discovered may be
an outlier and not representative of the entire interaction
process. This is evident in the case of sunflow, for which one
needs to inspect 838 of the 958 alarms produced to discover
all bugs. Observe however, in the column Rank-90%-T, that
the user discovers 90% of the true alarms within just 483
iterations. The more detailed comparison between Bingo

and Base-C presented in Figure 7 demonstrates that Bingo
has a consistently higher yield of true alarms than Base-C.

To capture this dynamical behavior, we consider the inter-
action process as represented by the ROC curve [14]. We plot
this for the ftp benchmark in Figure 8. The x- and y-axes
indicate the false and true alarms present in the benchmark,

and each point (x ,y) on the curve indicates an instant when
the user has inspected x false alarms and y true alarms. At
this step, if the system proposes a true alarm, then the next
point on the curve is at (x ,y + 1), and otherwise, the next
point is at (x + 1,y). The solid line is the curve for Bingo,
while the dotted lines are the ranking runs for each of the
runs of Base-C, and the diagonal line is the expected behav-
ior of Base-R. Observe that Bingo outperforms Base-C not
just in the aggregate, but across each of the individual runs.

Our final effectiveness metric, the AUC, is the normalized
area under the ROC curve. The AUC is closely related to the
inversion count χ of Section 3.4: if nt and nf are the number
of true and false alarms in a sequence w of alarms, then
χ (w ) = ntnf (1 − AUC(w )). It can also be shown that the
expected AUC of Base-R is equal to 0.5. On a scale ranging
from 0 to 1, on average, the AUC for Bingo exceeds that of
Base-C by 0.13 and of Base-R by 0.37.
In summary, we conclude that Bingo is indeed effective

at ranking alarms, and can significantly reduce the number
of false alarms that the user needs to triage.

5.3 Discovering New Bugs

In an attempt to control the number of alarms produced,
users are drawn to precise static and dynamic analysis tools,
which promise low false positive rates [22]. However, as
evidenced by missed security vulnerabilities such as Heart-
bleed [10], precise tools are necessarily unsound, and often
miss important bugs. To check whether Bingo can help in
this situation, we ran two state-of-the-art precise datarace
detectors: Chord [49] with unsound flags turned on, and
FastTrack [17], a dynamic datarace detector based on the
happens-before relation. We ran FastTrack with the inputs
that were supplied with the benchmarks.

We present the number of alarms produced and the num-
ber of bugs missed by each analyzer in Table 5. For example,
by turning on the unsound options, we reduce the number of
alarms produced by Chord from 522 to 211, but end up miss-
ing 39 real dataraces. Using Bingo, however, a user discovers
all true alarms within just 103 iterations, thereby discovering
108% more dataraces while inspecting 51% fewer alarms.

Aggregating across all our benchmarks, there are 379 real
dataraces, of which the unsound Chord analysis reports
only 203 and produces 1,414 alarms. Bingo discovers all
379 dataraces within a total of just 1,736 iterations. The user
therefore discovers 87% more dataraces by just inspecting
23% more alarms. In all, using Bingo allows the user to
inspect 100 new bugs which were not reported either by
FastTrack or by Chord in its unsound setting.
Furthermore, the analysis flags determine the number of

alarms produced in an unpredictable way: reducing it from
958 alarms to 506 alarms for sunflow, but from 1,870 alarms
to 80 alarms for xalan. In contrast, Bingo provides the user
with much more control over how much effort they would
like to spend to find bugs.
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Table 3. Benchmark characteristics. ‘Total’ and ‘App’ columns are numbers using 0-CFA call graph construction, with and
without the JDK for datarace analysis benchmarks, and with and without the Android framework for taint analysis benchmarks.

Program Description # Classes # Methods Bytecode (KLOC)

Total App Total App Total App
D
at
ar
ac
e
an
al
y
si
s

hedc Web crawler from ETH 357 44 2,154 230 141 11

ftp Apache FTP server 499 119 2,754 608 152 23

weblech Website download/mirror tool 579 56 3,344 303 167 12

jspider Web spider engine 362 113 1,584 426 95 13

avrora AVR microcontroller simulator 2,080 1,119 10,095 3,875 369 113

luindex Document indexing tool 1,168 169 7,494 1,030 317 47

sunflow Photo-realistic image rendering system 1,857 127 12,934 967 616 53

xalan XML to HTML transforming tool 1,727 390 12,214 3,007 520 120

T
ai
n
t
an
al
y
si
s

app-324 Unendorsed Adobe Flash player 1,788 81 6,518 167 40 10

noisy-sounds Music player 1,418 119 4,323 500 52 11

app-ca7 Simulation game 1,470 142 4,928 889 55 23

app-kQm Puzzle game 1,332 105 4,114 517 68 31

tilt-mazes Game packaging the Mobishooter malware 2,462 547 7,034 2,815 77 35

andors-trail RPG game infected with malware 1,623 339 5,016 1,523 81 44

ginger-master Image processing tool 1,474 159 4,500 738 82 39

app-018 Arcade game 1,840 275 5,397 1,389 98 50

Table 4. Summary of metrics for the effectiveness of Bingo. Rank-100%-T and Rank-90%-T are the ranks at which all and
90% of the true alarms have been inspected, respectively. For the baselines, we show the median measurement across five runs.

Program #Alarms Rank-100%-T Rank-90%-T Area under the curve (AUC)

Total Bugs %TP Bingo Base-C Base-R Bingo Base-C Base-R Bingo Base-C Base-R

D
at
ar
ac
e
an
al
y
si
s

hedc 152 12 7.89% 67 121 143 65 115 135 0.81 0.76 0.50

ftp 522 75 14.37% 103 368 520 80 290 476 0.98 0.78 0.49

weblech 30 6 20.00% 11 16 29 10 15 25 0.84 0.78 0.48

jspider 257 9 3.50% 20 128 247 19 101 201 0.97 0.81 0.59

avrora 978 29 2.97% 410 971 960 365 798 835 0.75 0.70 0.51

luindex 940 2 0.21% 14 101 587 14 101 587 0.99 0.89 0.61

sunflow 958 171 17.85% 838 timeout 952 483 timeout 872 0.79 timeout 0.50

xalan 1,870 75 4.01% 273 timeout 1844 266 timeout 1,706 0.91 timeout 0.50

T
ai
n
t
an
al
y
si
s

app-324 110 15 13.64% 51 104 106 44 89 97 0.83 0.58 0.50

noisy-sounds 212 52 24.53% 135 159 207 79 132 190 0.89 0.69 0.50

app-ca7 393 157 39.95% 206 277 391 172 212 350 0.96 0.81 0.51

app-kQm 817 160 19.58% 255 386 815 200 297 717 0.93 0.86 0.51

tilt-mazes 352 150 42.61% 221 305 351 155 205 318 0.95 0.79 0.50

andors-trail 156 7 4.49% 14 48 117 13 44 92 0.98 0.81 0.60

ginger-master 437 87 19.91% 267 303 436 150 214 401 0.84 0.77 0.47

app-018 420 46 10.95% 288 311 412 146 186 369 0.85 0.77 0.51

5.4 Robustness of Ranking

One potential concern with tools such as Bingo is that mis-
labelled alarms will deteriorate their performance. Further-
more, concurrency bugs such as dataraces are notoriously
hard to diagnose. However, in the user study described in
Section 5.1, we observed that when a group of professional
programmers are made to vote on the ground truth of an
alarm, they are able to correctly classify 90% of the alarms.

We extrapolated the results of this study and simulated the
runs of Bingo on ftp where the feedback labels had been
corrupted with noise. In Table 6, we measure the ranks at
which 90% and 100% of the alarms labelled true appear. As is
expected of an outlier, the rank of the last true alarm degrades
from 103 in the original setting to 203 in the presence of noise,
but the rank at which 90% of the true alarms have been
inspected increases more gracefully, from 80 originally to 98

Table 6. Robustness of Bingo with varying amounts of user
error in labelling alarms for the ftp benchmark. Each value
is the median of three measurements.

Tool Rank-100%-T Rank-90%-T AUC

E
x
ac
t

Bingo 103 80 0.98

Base-C 368 290 0.78

N
o
is
y Bingo (1% noise) 111 85 0.97

Bingo (5% noise) 128 88 0.93

Bingo (10% noise) 203 98 0.86

in the presence of 10% noise. In all cases, Bingo outperforms
the original Base-C. We conclude that Bingo can robustly
tolerate reasonable amounts of user error.

5.5 Scalability of the Ranking Algorithm

We present measurements of the running time of Bingo and
of Base-C in Table 7. We also present the iteration time when
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Figure 7. Comparing the interaction runs produced by Bingo and Base-C. The y-axis shows the number of alarms inspected
by the user, the ł•ž and ł×ž indicate the rounds in which the first and last true alarms were discovered, and the boxes indicate
the rounds in which 25%, 50%, and 75% of the true alarms were discovered. Each measurement for Base-C is itself the median
of 5 independent runs. The plots for the remaining benchmarks are available in Appendix C.

Table 5. The number of real dataraces missed by Chord’s datarace
analysis with unsound settings, and the FastTrack dynamic datarace
detector, for 8 Java benchmarks. New bugs are the real dataraces pro-
posed by Bingo but missed by both. LTR is the rank at which Bingo

discovers all true alarms.

Program Chord, soundy Chord, unsound Missed by Bingo

Total Bugs Total Bugs Missed FastTrack New bugs LTR

hedc 152 12 55 6 6 5 3 67

ftp 522 75 211 36 39 29 14 103

weblech 30 6 7 4 2 0 0 11

jspider 257 9 52 5 4 2 0 20

avrora 978 29 9 4 25 7 6 410

luindex 940 2 494 2 0 1 0 14

sunflow 958 171 506 94 77 151 69 838

xalan 1,870 75 80 52 23 8 8 273

Total 5,707 379 1,414 203 176 203 100 1,736
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Figure 8. The ROC curves for ftp. The
solid line is the curve for Bingo, while the
dotted lines are the curves for each of the
runs of the Base-C.

the optimizations of Section 4 are turned off. The iteration
time, corresponding to one run of the belief propagation al-
gorithm, is directly dependent on the size of the Bayesian net-
work, which we indicate by the columns labelled #Tuples and
#Clauses. In contrast, Base-C invokes a MaxSAT solver in
each iteration, and the columns labelled #Vars and #Clauses
indicate the size of the formula presented to the solver. Ob-
serve the massive gains in performanceÐon average, an im-
provement of 265×Ðas a result of the co-reachability based
pruning and chain compression, because of which Bingo

can handle even large benchmark programs such as xalan
and sunflow, on which Base-C times out.

5.6 Limitations

The running time of Bingo could preclude its integration
into an IDE. This limitation could be alleviated through solver
improvements and modular reasoning techniques for large

programs [34]. Secondly, we restrict ourselves to features
already present in the analysis, which could potentially limit
generalization from user feedback. Finally, early stopping
criteria, such as those mentioned in Section 2.5, affect sound-
ness and raise the possibility of missed bugs.

6 Related Work

There is a large body of research on techniques to overcome
the incompleteness of automatic program reasoning tools.
We catalog and summarize these efforts.

Interactive techniques. These approaches resolve alarms
through user feedback; they reason about the logical struc-
ture of the analysis to identify queries that are then posed
to the user [12, 35, 36, 51, 61]. Dillig et al [12] formulate the
search for missing facts to discharge alarm as an abductive
inference problem. Ivy [51] graphically displays succinct
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Table 7. Sizes of the Bayesian networks processed by Bingo, and of the MaxSAT problems processed by Base-C, and their
effect on iteration time. Data for the Android benchmarks is presented in Table 8 of Appendix C.

Program Bingo, optimized Bingo, unoptimized Base-C

#Tuples (K) #Clauses (K) Iter time (s) #Tuples (K) #Clauses (K) Iter time (s) #Vars (K) #Clauses (K) Iter time (s)

hedc 2.2 3.1 46 753 789 12,689 1,298 1,468 194

ftp 25 40 1,341 2,067 2,182 37,447 2,859 3,470 559

weblech 0.31 0.38 3 497 524 7,950 1,498 1,718 290

jspider 9 15 570 1,126 1,188 12,982 1,507 1,858 240

avrora 11 22 649 1,552 1,824 47,552 2,305 3,007 1,094

luindex 5.3 6.5 41 488 522 9,334 1,584 1,834 379

sunflow 59 96 3,636 9,632 11,098 timeout 26,025 34,218 timeout

xalan 19 32 489 2,452 2,917 51,812 6,418 8,660 timeout

counterexamples to the user to help identify inductive in-
variants. URSA [61] formulates the search for the root causes
of false alarms in Datalog derivation graphs as an informa-
tion gain maximization problem. Le and Soffa [35] and Lee
et al [36] identify correlations between alarms of the form
łIf a is false, then b is also false.ž Thus, an entire family of
alarms can be resolved by the user inspecting a single alarm
in the family. These techniques often give soundness guar-
antees assuming correct user responses. However, they are
constrained by the limits of logical reasoning, and cannot ex-
tract fine correlations between alarms (such as, łIf a is false,
then b is also likely to be false.ž). Moreover, in contrast to
many of these systems, Bingo only asks the user to provide
the ground truth of alarms they are already triaging, instead
of posing other kinds of queries. This significantly lowers
the burden of using our approach.

Statistical techniques. Such approaches leverage various
kinds of program features to statistically determine which
alarms are likely bugs. The z-ranking algorithm [30, 31]
uses the observation that alarms within physical proxim-
ity of each other (e.g., within the same function or file) are
correlated in their ground truth and applies a statistical tech-
nique called the z-test to rank alarms. More recently, other
kinds of program features have been used to statistically
classify analysis alarms [5, 25, 28, 58]. On the one hand, our
work can be seen as explaining why these techniques tend
to work; for instance, alarms within the same function are
more likely to share portions of their derivation graph, and
these correlations are therefore emergent phenomena that are
naturally captured by our Bayesian network. On the other
hand, these techniques can exploit extra-analytic program
features, which is an important future direction for our work.

Previous techniques have also leveraged analysis-derived
features, e.g., to assign confidence values to alarms [37], and
classify alarms with a single round of user feedback [41]. The
key difference compared to these works is Bingo’s ability to
maximize the return on the user’s effort in inspecting each
alarm. As described in Sections 3 and 5, Bingo therefore
significantly outperforms the baseline based on [41].

Further out, there is a large body of work on using statisti-
cal techniques for mining likely specifications and reporting

anomalies as bugs (e.g., [32, 38, 46, 55]) and for improving
the performance of static analyzers (e.g., [8, 23, 24]).

Inference techniques. Starting with Pearl [52, 53], there is
a rich body of work on using graphical models to combine
logical and probabilistic reasoning in AI. Prominent exam-
ples include Bayesian networks and Markov networks, and
we refer the reader to Koller and Friedman’s comprehensive
textbook [29]. A more recent challenge involves extending
these models to capture richer logical formalisms such as
Horn clauses and first-order logic. This has resulted in frame-
works such as probabilistic relational models [21], Markov
logic networks [50, 57], Bayesian logic programs [26], and
probabilistic languages such as Blog [43], ProbLog [16], and
Infer.NET [44]. Our work may be viewed as an attempt to
apply these ideas to program reasoning.

There are several methods to perform marginal inference
in Bayesian networks. Examples include exact methods, such
as variable elimination, the junction tree algorithm [27], and
symbolic techniques [20], approximate methods based on
belief propagation [33, 45], and those based on sampling,
such as Gibbs sampling or MCMC search. Recent advances
on the random generation of SAT witnesses [9] also fall in
this area. Given that exact inference is #P-complete [11, 29],
our main consideration in choosing belief propagation was
the desire for deterministic output, and the requirement to
scale to large codebases.

7 Conclusion

In this paper, we presented Bingo, a static analysis tool
which prioritizes true alarms over false ones by leveraging
user feedback and by performing Bayesian inference over the
derivation graph. We demonstrated significant improvement
over two different baselines and across several metrics on
two instance analyses and a suite of 16 benchmark programs.

We view Bingo as the first step in a program to integrate
probabilistic techniques more deeply into traditional soft-
ware engineering tools. Our immediate problems of interest
include incrementality (How do we carry forward informa-
tion from one version of the program being analyzed to the
next?), and improving accuracy by considering program fea-
tures which are invisible to the analysis (such as variable
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names and results of dynamic analyses). In the longer term,
we plan to investigate various non-traditional uses of Bingo,
such as during analysis design, to obtain data-driven insights
into otherwise non-statistical analyses.
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