
Learning a Variable-Clustering Strategy
for Octagon from Labeled Data
Generated by a Static Analysis

Kihong Heo1, Hakjoo Oh2, Hongseok Yang3

Seoul National University1

Korea University2

University of Oxford3

SAS 2016 @Edinburgh

1

Long Term Goal
• Self-evolving static analysis by learning big data

• data : similar codes, old versions, user-feedbacks, bug
reports, test results, etc

• mature in other fields : …

2

+
Big Data Static Analyzer

Long Term Goal

3

• Finding a good abstraction for adaptive static analysis

• Machine Learning (learner) + Static Analysis (teacher)

• e.g.) relation, context, flow, etc

soundness

scalability precision

F 2 Pgm ⇥⇧ ! A

soundness

scalability precision

Relational Analysis
• Tracking relationships among variables

• e.g.) octagon analysis :

4

a b c i

a 0 ∞ ∞ ∞

b ∞ 0 ∞ ∞

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

{a, b, c, i}

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

*Consider x-y ≤ c only,  
for simplicity

(±x)� (±y) c

Relational Analysis
• Tracking relationships among variables

• e.g.) octagon analysis :

5

a b c i

a 0 0 ∞ ∞

b 0 0 ∞ ∞

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

b - a ≤ 0

a - b ≤ 0

{a, b, c, i}

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

(±x)� (±y) c

Relational Analysis
• Tracking relationships among variables

• e.g.) octagon analysis :

6

a b c i

a 0 0 ∞ ∞

b 0 0 ∞ ∞

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

c - a ≤ ∞
c - b ≤ ∞

a - c ≤ ∞
b - c ≤ ∞

{a, b, c, i}

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

(±x)� (±y) c

Relational Analysis
• Tracking relationships among variables

• e.g.) octagon analysis :

7

a b c i

a 0 0 ∞ ∞

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

i - b ≤ -1

{a, b, c, i}

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

(±x)� (±y) c

Relational Analysis
• Tracking relationships among variables

• e.g.) octagon analysis :

8

a b c i

a 0 0 ∞ -1

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

i - a ≤ -1

{a, b, c, i}

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

(±x)� (±y) c

Relational Analysis
• Tracking relationships among variables

• e.g.) octagon analysis :

9

a b c i

a 0 0 ∞ -1

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

i - c ≤ ∞

{a, b, c, i}

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

(±x)� (±y) c

Relational Analysis
• Tracking relationships among variables

• e.g.) octagon analysis :

10

a b c i

a 0 0 ∞ -1

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

{a, b, c, i}

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

Do we need c?

(±x)� (±y) c

Selective Relational Analysis
• Selectively tracking relationships among variables

• within the same cluster

11

a b i

a 0 0 -1

b 0 0 -1

i ∞ ∞ 0

-∞ ≤ c ≤ +∞+

{a,b,i} {c}

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

Previous Solution

• Variable clustering by impact pre-analysis

• estimating the impact of relationships

• more scalable than the baseline Octagon analysis

• more scalable & precise than other clustering methods

12

PLDI’14

Problem

• Variable clustering by impact pre-analysis

• fully relational pre-analysis as an online estimator

• e.g.) 17 open source benchmarks (~100KLOC)

13

Time

[PLDI’14]

0 10000 20000 30000 40000

Var.Clustering
Main�Analysis

PLDI’14

98%

New Solution

• Learning a variable-clustering strategy from big data

• fully relational pre-analysis as an offline teacher

• 33x faster yet similarly precise

14

Time

[PLDI’14]

[ML-based]

0 10000 20000 30000 40000

Var.Clustering
Main�Analysis

This W
ork

Big Picture
• Learning a variable-clustering strategy from big data

15

Codebase Training Data
(Var. relationship)

Target
Program

Classifier

Machine Learning

Variable
Clustering

Results
(Var. Relationship)

П
Clusters

Static Analysis

Big Picture
• Learning a variable-clustering strategy from big data

16

Codebase Training Data
(Var. relationship)

Target
Program

Classifier

Machine Learning

Results
(Var. Relationship)

П

Static Analysis

Clusters

Variable
Clustering

Training Data
• Pairs of two variables with label {⊕, ⊖}

• ⊕: precise (< +∞), ⊖: imprecise (= +∞)

17

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

a b c i

a 0 0 ∞ -1

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

Octagon Analysis

⊕ : {(a,b), (a,i), (b,a) …}  
⊖ : {(a,c), (b,c), (c,a) …}

Training Data
• Automatically generated by impact pre-analysis[PLDI’14]

• fully relational, yet more scalable than the full octagon

18

a b c i

a ★ ★ T ★

b ★ ★ T ★

c T T ★ T

i T T T ★

�(F) = Z
�(>) = Z [{+1}

a b c i

a 0 0 ∞ -1

b 0 0 ∞ -1

c ∞ ∞ 0 ∞

i ∞ ∞ ∞ 0

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

Octagon Analysis Impact Pre-analysis

⊕ : {(a,b), (a,i), (b,a) …}  
⊖ : {(a,c), (b,c), (c,a) …}

Big Picture
• Learning a variable-clustering strategy from big data

19

Codebase Training Data
(Var. relationship)

Target
Program

Classifier

Machine Learning

Results
(Var. Relationship)

П

Static Analysis

Clusters

Variable
Clustering

Features

• 30 Features of variable pairs

• boolean predicate of (x,y) in program P

20

(Positive situations for Octagon)
- x=y+k�or�y=x+k
- x<=y+k�or�y<=x+k
- x=malloc(y)�or�y=malloc(x)
- x[y] or y[x]
- …�

(Negative situations for Octagon)
- x=cy or�y=cx (c�!=�1)�
- x=yz�or�y=xz
- x=y/z�or�y=x/z
- …

(General syntactic features)
- x or y is a field
- x and y represent sizes of arrays
- x or y is the size of a const string
- x or y is a global variable
- …

(General semantic features)
- x or y has a finite interval
- x or y is a local var in a recursive function
- x, y are not accessed in the same function
- …

Features

• Importance of features by Gini Index

• negative & general > positive & domain-specific

21 *Top 5 most important features

(Positive situations for Octagon)
- x=y+k�or�y=x+k
- x<=y+k�or�y<=x+k
- x=malloc(y)�or�y=malloc(x)
- x[y] or y[x]
- …�

(Negative situations for Octagon)
- x=cy or�y=cx (c�!=�1)�
- x=yz�or�y=xz
- x=y/z�or�y=x/z
- …

(General syntactic features)
- x or y is a field
- x and y represent sizes of arrays
- x or y is the size of a const string
- x or y is a global variable
- …

(General semantic features)
- x or y has a finite interval
- x or y is a local var in a recursive function
- x, y are not accessed in the same function
- …

Classifier

• Learning a binary classifier

• using an off-the-shelf ML algorithm: decision tree

• Why decision tree?

• more expressive than linear models

• e.g.) Octagon with logistic regression : 10~12x slower

22

C : Var ⇥ Var ! {�, }

Big Picture
• Learning a variable-clustering strategy from big data

23

Codebase Training Data
(Var. relationship)

Target
Program

Classifier

Machine Learning

Results
(Var. Relationship)

П

Static Analysis

Clusters

Variable
Clustering

Clustering Strategy
• ⊕-marked variable pairs in the same cluster

• naturally covers transitive relationships

24

c

i

b

a

contexts that represent the “difference” between

i

and 0. Intu-
itively, if 0 is a suffix of

i

, i.e.,
i

=

0
i

· 0, the partial context
for

i

is defined as 0
i

. Formally, we define the partial calling con-
texts of

i

as
i

 0 =

i

� su�x(
i

,0) where su�x(1,2) is
the longest common suffix of 1 and 2. For example, when

i

is
a suffix of 0, we use ✏ as the partial context for

i

: if 0 = c2 · c1
and

i

= c1, then

i

 0 = ✏. Suppose that
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and

i

= c3 · c1. In
this case,

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0 0, . . . ,q

 0}
give all the necessary partial calling contexts, where each

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q

,

q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
i

 0 | fid(c
i

) = f ^ ((c
i

,

i

),) 2 p}.

Example 6. From the path p1 in Example 5, the collection of
i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of

i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =

h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal
precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [10].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y c (where c 2 Z [{1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a 0 at line 1 and i � b �1 at line 3. Then, combining
the two via a closure operation [10], the analysis concludes that
constraint i � a �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [10]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y > represents
all octagon constraints of the form x + y c including the case
that c = 1, whereas x + y v F means octagon constraints
x + y c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for

1 For simplicity, we consider only constraints of the form x � y c. In
fact, the octagon analysis tracks constraints of both forms x � y c and
x+ y c and maintains a matrix of size (2⇥ |Var|)2.

⊕

⊕

C(x,y)
(a,b) ⊕
(a,i) ⊖
(b,i) ⊕
(a,c) ⊖
… …

Experiments

• Implemented on top of

• sound & global analyzer

• a buffer overrun detector for full C

• 17 open source benchmarks (~100KLOC)

25

Experimental Results
• Effectiveness (leave-one-out cross validation)

26

Program LOC #Abs.Loc. # Alarms Time(s)
Itv Impt ML Itv Impt ML

brutefir 103 54 4 0 0 0 0 0
consol 
calculator

298 165 20 10 10 0 0 0
id3 512 527 15 6 6 0 0 1
spell 2,213 450 20 8 17 0 1 1
mp3rename 2,466 332 33 3 3 0 1 1
irmp3 3,797 523 2 0 0 1 2 3
barcode 4,460 1,738 235 215 215 2 9 6
httptunnel 6,174 1,622 52 29 27 3 35 5
e2ps 6,222 1,437 119 58 58 3 6 3
bc 13,093 1,891 371 364 364 14 252 16
less 23,822 3,682 625 620 625 83 2,354 87
bison 56,361 14,610 1,988 1,955 1,955 137 4,827 237
pies 66,196 9,472 795 785 785 49 14,942 95
icecast-server 68,564 6,183 239 232 232 51 109 107
raptor 76,378 8,889 2,156 2,148 2,148 242 17,844 345
dico 84,333 4,349 402 396 396 38 156 51
lsh 110,898 18,880 330 325 325 33 139 251
Total 7,406 7,154 7,166 656 40,677 1,207

Experimental Results
• Effectiveness (leave-one-out cross validation)

-252 -240

Program LOC #Abs.Loc. # Alarms Time(s)
Itv Impt ML Itv Impt ML

brutefir 103 54 4 0 0 0 0 0
consol 
calculator

298 165 20 10 10 0 0 0
id3 512 527 15 6 6 0 0 1
spell 2,213 450 20 8 17 0 1 1
mp3rename 2,466 332 33 3 3 0 1 1
irmp3 3,797 523 2 0 0 1 2 3
barcode 4,460 1,738 235 215 215 2 9 6
httptunnel 6,174 1,622 52 29 27 3 35 5
e2ps 6,222 1,437 119 58 58 3 6 3
bc 13,093 1,891 371 364 364 14 252 16
less 23,822 3,682 625 620 625 83 2,354 87
bison 56,361 14,610 1,988 1,955 1,955 137 4,827 237
pies 66,196 9,472 795 785 785 49 14,942 95
icecast-server 68,564 6,183 239 232 232 51 109 107
raptor 76,378 8,889 2,156 2,148 2,148 242 17,844 345
dico 84,333 4,349 402 396 396 38 156 51
lsh 110,898 18,880 330 325 325 33 139 251
Total 7,406 7,154 7,166 656 40,677 1,207

Experimental Results
• Effectiveness (leave-one-out cross validation)

Program LOC #Abs.Loc. # Alarms Time(s)
Itv Impt ML Itv Impt ML

brutefir 103 54 4 0 0 0 0 0
consol 
calculator

298 165 20 10 10 0 0 0
id3 512 527 15 6 6 0 0 1
spell 2,213 450 20 8 17 0 1 1
mp3rename 2,466 332 33 3 3 0 1 1
irmp3 3,797 523 2 0 0 1 2 3
barcode 4,460 1,738 235 215 215 2 9 6
httptunnel 6,174 1,622 52 29 27 3 35 5
e2ps 6,222 1,437 119 58 58 3 6 3
bc 13,093 1,891 371 364 364 14 252 16
less 23,822 3,682 625 620 625 83 2,354 87
bison 56,361 14,610 1,988 1,955 1,955 137 4,827 237
pies 66,196 9,472 795 785 785 49 14,942 95
icecast-server 68,564 6,183 239 232 232 51 109 107
raptor 76,378 8,889 2,156 2,148 2,148 242 17,844 345
dico 84,333 4,349 402 396 396 38 156 51
lsh 110,898 18,880 330 325 325 33 139 251
Total 7,406 7,154 7,166 656 40,677 1,207

-252 -240

Experimental Results
• Effectiveness (leave-one-out cross validation)

29 x62 x2

Program LOC #Abs.Loc. # Alarms Time(s)
Itv Impt ML Itv Impt ML

brutefir 103 54 4 0 0 0 0 0
consol 
calculator

298 165 20 10 10 0 0 0
id3 512 527 15 6 6 0 0 1
spell 2,213 450 20 8 17 0 1 1
mp3rename 2,466 332 33 3 3 0 1 1
irmp3 3,797 523 2 0 0 1 2 3
barcode 4,460 1,738 235 215 215 2 9 6
httptunnel 6,174 1,622 52 29 27 3 35 5
e2ps 6,222 1,437 119 58 58 3 6 3
bc 13,093 1,891 371 364 364 14 252 16
less 23,822 3,682 625 620 625 83 2,354 87
bison 56,361 14,610 1,988 1,955 1,955 137 4,827 237
pies 66,196 9,472 795 785 785 49 14,942 95
icecast-server 68,564 6,183 239 232 232 51 109 107
raptor 76,378 8,889 2,156 2,148 2,148 242 17,844 345
dico 84,333 4,349 402 396 396 38 156 51
lsh 110,898 18,880 330 325 325 33 139 251
Total 7,406 7,154 7,166 656 40,677 1,207

Experimental Results

• Generalization : training only with small (<60KLOC) pgms

30

Program LOC Abs. Loc.
Alarms Time(s)

Itv All Small Itv All Small

pies 66,196 9,472 795 785 785 49 95 98

icecast-server 68,564 6,183 239 232 232 51 113 99

raptor 76,378 8,889 2,156 2,148 2,148 242 345 388

dico 84,333 4,349 402 396 396 38 61 62

lsh 110,898 18,880 330 325 325 33 251 251

Total 7,406 3,886 3,886 413 865 898

+4%

Summary

• Adaptive variable-clustering strategy for Octagon

• Machine Learning (learner) + Static Analysis (teacher)

• 33x faster than a static-analysis-only approach

31

+

Summary

• Adaptive variable-clustering strategy for Octagon

• Machine Learning (learner) + Static Analysis (teacher)

• 33x faster than a static-analysis-only approach

32

+

Thank You

