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We present a method for selectively applying context-sensitivity during interprocedural program analysis.
Our method applies context-sensitivity only when and where doing so is likely to improve the precision
that matters for resolving given queries. The idea is to use a pre-analysis to estimate the impact of context-
sensitivity on the main analysis’s precision, and to use this information to find out when and where the main
analysis should turn on or off its context-sensitivity. We formalize this approach and prove that the analysis
always benefits from the pre-analysis-guided context-sensitivity. We implemented this selective method for
an existing industrial-strength interval analyzer for full C. The method reduced the number of (false) alarms
by 24.4%, while increasing the analysis cost by 27.8% on average.

The use of the selective method is not limited to context-sensitivity. We demonstrate this generality by
following the same principle and developing a selective relational analysis and a selective flow-sensitive
analysis. Our experiments show that the method cost-effectively improves the precision in the these analyses
as well.
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1. INTRODUCTION
Handling procedure calls in static analysis with a right balance between precision and
cost is challenging. To precisely analyze procedure calls and returns, the analysis has
to distinguish calls to the same procedure by their different calling contexts. However,
a simple-minded, uniform context-sensitivity at all call sites easily makes the resulting
analysis non cost-effective. For example, imagine a program analysis for proving the
safety of array accesses that uses the k-callstring approach [Sharir and Pnueli 1981;
Shivers 1991] for abstracting calling contexts. The k-callstring approach distinguishes
two calls to the same procedure whenever their k-most recent call sites are different.
To make this context-sensitive analysis cost-effective, we need to tune the k values at
the call sites in a way that we should increase the k value only where the increased
precision contributes to the proof of array-access safety. If we simply use the same fixed
k for all the call sites, the analysis would end up becoming either unnecessarily precise
and costly, or not precise enough to prove the safety of many array accesses.
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In this paper, we present a method for performing selective context-sensitive anal-
ysis which applies the context-sensitivity only when and where doing so is likely to
improve the precision that matters for the analysis’s ultimate goal. Our method works
for callstrings-based context-sensitivity1, and it consists of two steps. The first step is
a pre-analysis that estimates the behavior of the main analysis under the full context-
sensitivity (i.e. using ∞-callstrings). The pre-analysis focuses only on estimating the
impact of context-sensitivity on the main analysis. Hence, it aggressively abstracts the
other semantic aspects of the main analysis. The second step is the main analysis with
selective context-sensitivity. This analysis uses the results of the pre-analysis, selects
influential call sites for precision, and selectively applies context-sensitivity only to
these call sites.

One important feature of our method is that the pre-analysis-guided context-
sensitivity pays off at the subsequent selective context-sensitive analysis. One way to
see the subtlety of this impact realization is to note that the pre-analysis and the selec-
tive main analysis are incomparable in precision: the pre-analysis is more precise than
the main analysis in terms of context-sensitivity, but it is worse than the main analy-
sis in tracking individual program statements. Despite this mismatch, our guidelines
for designing an impact pre-analysis and the resulting selective context-sensitivity en-
sure that the selective context-sensitive main analysis is at least as precise as the fully
context-sensitive pre-analysis, as far as given queries are concerned.

We have implemented our method on an existing industrial-strength interval an-
alyzer for full C. The method led to the reduction of alarms between 6.6 and 48.3%,
with average 24.4%, compared with the baseline context-insensitive analysis, while
increasing the analysis cost between 9.4 and 50.5%, with average 27.8%.

The general principle behind the design and the use of impact pre-analysis is not
limited to context-sensitivity. Instead of designing a particular selective analysis for
context-sensitivity, we provide a guideline for designing impact pre-analyses for a
range of static analyses. Also, we follow the same guideline to develop two other selec-
tive program analyses in order to demonstrate the applicability of the general princi-
ple. The first one is a selective relational analysis that keeps track of relationships be-
tween variables, only when tracking them are likely to help the main analysis answer
given queries. In this case, the impact pre-analysis is fully relational while it aggres-
sively abstracts other semantic aspects. Second, we design a selective flow-sensitive
analysis that applies flow-sensitivity only to certain program points where the main
analysis is likely to need flow-sensitive information to answer given queries. The im-
pact pre-analysis in this case is fully flow-sensitive while it aggressively abstracts
other semantic aspects. The experiments show that our selective relational analysis
and selective flow-sensitive analysis achieve competitive cost-precision tradeoffs when
applied to real-world benchmark programs.

Contributions. In this paper, which is an extension of [Oh et al. 2014], we make the
following contributions:

— We present a method for performing selective context-sensitive analysis that receives
guidance from an impact pre-analysis. We provide a design of selective context-
sensitive analyses (Section 4) and guidelines for designing and using an impact
pre-analysis (Section 5), and show that our method ensures the impact realization
(Proposition 5.17).

1Developing a variant of our method to the so called functional approach in [Sharir and Pnueli 1981] is a
challenging and interesting future research direction.
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— We show that the general idea behind our selective method is not limited to context-
sensitivity. We show that our method can be used for performing relational analysis
and flow-sensitive analysis in a selective way (Section 6).

— We experimentally show the effectiveness of selective analyses designed according to
our method, with real-world C programs (Section 7).

Compared to the previous version [Oh et al. 2014], the present paper provides further
details of our selective context-sensitive analysis (Section 4 and 5), formally proves the
correctness of our method (Appendix A), and shows that the general approach behind
our method is also applicable to developing a selective flow-sensitive analysis (Section
6.2).

Organization. The rest of the paper is organized as follows. Section 2 gives an infor-
mal overview of our approach. Section 3 presents the program representation that
we consider. Section 4 defines a class of interprocedural program analyses that is
parametrized by context-sensitivity. Section 5 shows how to design and use impact
pre-analysis for finding a context-sensitivity parameter. Section 6 and Section 7 apply
the general methodology behind our method into relational analysis and flow-sensitive
analysis, respectively. Section 8 presents the experimental results. Section 9 discusses
the related work and Section 10 concludes.

2. INFORMAL DESCRIPTION
We illustrate our approach using the interval domain and the program in Figure 1,
which is adopted from make-3.76.1.

Example Program. Procedure xmalloc is a wrapper of the malloc function. Proce-
dure multi glob calls xmalloc twice, once with argument size (line 4) and again with
an external input (line 6). The main procedure of this program calls procedure f and
g. Procedure f and g call multi glob with different argument values, which models a
pattern in make-3.76.1 that multi glob often receives constant arguments.

The program contains two queries. The first query at line 5 asks whether p points to a
buffer of size larger than 1. The other query at line 7 is similar, but this time for pointer
q. Note that the first query always holds, but the second query is not necessarily true,
because the return value of input() at line 6 is unknown and may well be a value not
greater than 1.

Context-insensitive analysis. If we analyze the program using a context-insensitive
interval analysis, we cannot prove the first query. Since the analysis is insensitive to
calling contexts, it estimates the effect of xmalloc under all the possible inputs, and
uses this same estimation as the result of every call. Note that an input to xmalloc at
line 6 can be any integer because an unknown value is passed to xmalloc at line 6. As
a result, the analysis concludes that xmalloc allocates a buffer of a size in [−∞,+∞],
and that the size of buffers allocated at line 4 and 6 (pointed to by p and q, respectively)
is unknown, i.e., in [−∞,+∞]. This estimation is not strong enough to prove the first
query.

Uniform context-sensitivity. A natural way to fix this precision issue is to increase
the context-sensitivity. One popular approach is the k-CFA analysis [Sharir and Pnueli
1981; Shivers 1991]. It uses sequences of call sites up to length k to distinguish calling
contexts of a procedure, and analyzes the procedure separately for such distinguished
calling contexts. For instance, a 3-CFA analysis analyzes xmalloc separately for each
of the following calling contexts:
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1 char* xmalloc (int n) { return malloc(n); }
2

3 void multi_glob (int size) {
4 p = xmalloc (size);
5 assert (sizeof(p) > 1); // Query 1
6 q = xmalloc (input());
7 assert (sizeof(q) > 1); // Query 2
8 }
9

10 void f (int x) { multi_glob (x); }
11 void g () { multi_glob (4); }
12

13 int main() {
14 f (8);
15 f (16);
16 g ();
17 g ();
18 }

Fig. 1: Example Program

4 · 10 · 14 4 · 10 · 15 4 · 11 · 16 4 · 11 · 17
6 · 10 · 14 6 · 10 · 15 6 · 11 · 16 6 · 11 · 17

(1)

Here a · b · c denotes a sequence of call sites a, b and c (we use the line numbers as
call sites), with a being the most recent call. For instance, 4 · 10 · 14 represents a series
of procedure calls, first f at line 14, then multi glob at line 10 and finally xmalloc at
line 4. Note that in the concrete semantics, the argument n of xmalloc receives constant
values 8, 16, 4, and 4, respectively, under the first four contexts above (4 ·10 ·14, 4 ·10 ·15,
4 ·11 ·16, and 4 ·11 ·17). The 3-CFA analysis can spot this fact — it analyzes the first four
calling contexts separately, and infers that a buffer of a size greater than 1 always gets
allocated under those calling contexts. As a result, the analysis can deduce that the
call to xmalloc at line 4 always returns a buffer of a size greater than 1, a conclusion
strong enough to prove the first query. The second query cannot be proved even with
this context-sensitivity, because the argument n is unknown (represented by [−∞,+∞]
in interval analysis) under the last four calling contexts in (1).

Need of selective context-sensitivity. However, using such a “uniform” context-
sensitivity is not ideal. It is often too expensive to run such an analysis with high
enough k, such as k ≥ 3 that our example needs. More importantly, for many pro-
cedure calls, increasing context-sensitivity does not help — either it does not improve
the analysis results of these calls, or the increased precision is not useful for answering
queries. For instance, at the second query, a k-CFA analysis of any every can conclude
that p points to a buffer of size [−∞,+∞]. Also, analyzing g separately for call site 16
and 17 is unnecessary because those two calls have the same effect on queries; both of
the calls end up invoking multi glob with the same argument 4 at line 11.

Our selective context-sensitivity. Our selective context-sensitivity aims at analyzing
procedures with only needed context-sensitivity. It analyzes a procedure separately for
a calling context if doing so is likely to improve the precision of the analysis and reduce
false alarms in its answers for given queries. For the example program, our analysis
first predicts that increasing context-sensitivity is unlikely to help answer the second
query (line 7) accurately, but is likely to do so for the first query (line 5). Next, the
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analysis finds out that we can bring the full benefit of context-sensitivity for the first
query, by distinguishing only the following four types of calling contexts of xmalloc:

4 · 10 · 14 4 · 10 · 15
4 · 11 all the other contexts (2)

Note that contexts 4 · 11 · 16 and 4 · 11 · 17 are merged into a single context 4 · 11. This
merging happens because the analysis figures out that two callers of g (line 16 and 17)
do not provide any useful information for resolving the first query. Finally, the analysis
analyzes the given program using the interval domain while distinguishing calling
contexts above and their suffixes (i.e., 10 · 14, 10 · 15, 14, 15, 11). This selective context-
sensitive analysis can prove the first query because it analyzes the call to xmalloc at
line 4 separately for calling contexts 4 · 10 · 14, 4 · 10 · 15, and 4 · 11, and correctly infers
that buffers of size 8, 16 and 4 get allocated, respectively.

Impact pre-analysis. Our key idea is to approximate the main analysis under full
context-sensitivity using a pre-analysis, and estimate the impact of context-sensitivity
on the results of the main analysis. This impact pre-analysis uses a simple (nonre-
lational) abstract domain and simple (disjunctive) transfer functions, and can be run
efficiently even with full context-sensitivity. An abstract state of the pre-analysis rep-
resents a set of abstract states of the main analysis (rather than a set of concrete
states).

For instance, we approximate the interval analysis in this example using a pre-
analysis with the following abstract domain:

{⊥} ∪ (Var→ {>,F}).
Here > means all intervals, and F intervals of the form [l, u] with 0 ≤ l ≤ u. A typical
abstract state in this domain is

[x : >, y :F],

which means the following set of states in the interval domain:

{[x : [lx, ux], y : [ly, uy]] | lx ≤ ux ∧ 0 ≤ ly ≤ uy}.
This simple abstract domain of the pre-analysis is chosen because we are interested in
showing the absence of buffer overruns and the analysis proves such properties only
when it finds non-negative intervals for buffer sizes and indices.

We run this pre-analysis under full context-sensitivity (i.e., ∞-CFA). For our exam-
ple program, we obtain a summary of xmalloc with eight entries, each corresponding
to a different context in (1). The third column of the table below shows this summary:

Size of the allocated buffer in xmalloc
Contexts Main analysis Pre-analysis
4 · 10 · 14 [8, 8] F
4 · 10 · 15 [16, 16] F
4 · 11 · 16 [4, 4] F
4 · 11 · 17 [4, 4] F
6 · 10 · 14 [−∞,+∞] >
6 · 10 · 15 [−∞,+∞] >
6 · 11 · 16 [−∞,+∞] >
6 · 11 · 17 [−∞,+∞] >

The second column of the table shows the results of the interval analysis with full
context-sensitivity. Note that the pre-analysis in this case precisely estimates the im-
pact of context-sensitivity: it identifies calling contexts (i.e., the first four contexts in
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the table) where the interval analysis accurately tracks the size of the allocated buffer
in xmalloc under the full context-sensitivity. In general, our pre-analysis might lose
precision and use > more often than in the ideal case. However, even when such ap-
proximation occurs, it does so only in a sound manner—if the pre-analysis computesF
for the size of a buffer, the interval analysis under full context-sensitivity is guaranteed
to compute a non-negative interval.

Use of pre-analysis results. From the pre-analysis results, we select calling contexts
that help improve the precision regarding given queries. We first identify queries
whose expressions are assigned with F in the pre-analysis run. In our example, the
pre-analysis assigns F to expression sizeof(p) in the first query. We regard this as a
good indication that the interval analysis under full context-sensitivity is likely to esti-
mate the value of sizeof(p) accurately. Then, for each query that is judged promising,
we consider the slice of the program that contributes to the query. We conclude that
all the calls made in the slice should be tracked precisely. For example, if a slice for a
query looks as follows:

query
f h i

g

• • •
•

•

Then, we derive calling contexts f, g, {h · f, h · g}, and {i · h · f, i · h · g} for f, g, h, and
i, respectively. However, if a slice involves a recursive call as follows:

source query
f g h
• • •

we exclude the query since otherwise, we need infinitely many different calling con-
texts. In our example program, the slice for the first query includes all the execution
paths from lines 11, 14, and 15 to line 5. Note that call-sites 16 and 17 are not included
in the slice, since procedure g is called with no actual arguments and does not make
dependency on the queries of interest. Thus, all the calling contexts of xmalloc in this
slice are:

4 · 10 · 14 4 · 10 · 15 4 · 11 (3)

Our analysis decides to distinguish these contexts and their suffixes. (We distinguish
all of these contexts to work against the precision degradation caused by widening. For
instance, in our example program, it is not sufficient to simply distinguish the call sites
to xmalloc (line 4 and 6). Suppose we adopt this simple strategy for selective context-
sensitivity, and do not separate the calling contexts of multi glob and f. Because of
the spurious interprocedural cycles [Oh and Yi 2010] caused by the joined calling con-
texts, the analysis should apply the widening operation when analyzing multi glob
and f. At the first call site (line 14), f is analyzed with the parameter value [8, 8], and
at the second call site (line 15), f is analyzed with [16, 16]. At this point, the analysis
combines these parameter values with the widening operator, and sets the estimation
of the parameter x to the interval [8,+∞]. As f calls multi glob, the parameter size of
multi glob has the interval [8,+∞]. This estimation is weakened again at the call of
multi glob at line 11, and it becomes [8,+∞]∇[4, 4] = [−∞,+∞]. Hence, the analysis
fails to prove that the call at line 4 returns a buffer of size > 1. This is why our selec-
tively context-sensitive analysis analyzes xmalloc for the three calling contexts in (2)
separately.)
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Impact realization. Our method guarantees that the impact estimation under full
context-sensitivity pays off at the subsequent selective context-sensitive analysis. That
is, in our example program, the selective main analysis, which distinguishes only the
contexts in (2), is guaranteed to assign nonnegative intervals to sizeof(p) at the first
query. This guarantee holds because our selective context-sensitive analysis distin-
guishes all the calling contexts that matter for the selected queries (Section 5.2) and
ensures that undistinguished contexts are isolated from the distinguished contexts
(Section 4). For instance, even if the call to xmalloc at line 6 is analyzed in a context-
insensitive way, the result does not taint the precise summary of the other call to
xmalloc at line 4.

The impact realization property provides a minimum guarantee and increases the
predictability of our method. Suppose that the impact realization does not hold. Then,
the pre-analysis might possibly give F for a query for which the main analysis would
produce >. In that case, our method would still select that query even though the main
analysis under full context-sensitivity would end up failing to prove the query’s safety.
The impact realization is therefore important in that it guarantees such cases do not
occur.

Limitation. Our approach has weakness in two ways; it might choose to context-
sensitively analyze trivial queries requiring no context-sensitivity, or miss the ones
that can be actually proven under a proper context-sensitivity. A nontrivial result (i.e.,
F) for a query could have been from both intraprocedural and interprocedural value
dependencies and the pre-analysis itself does not distinguish between the two. If there
have been only intraprocedural dependencies that contribute to a nontrivial result,
the main-analysis would anyway apply context-sensitivity for the query even though
it is unnecessary. Also, the pre-analysis could have given a trivial result (i.e., >) due
to its own limitation in the value abstraction, not because the main-analysis could
not prove the query. In this case, our approach fails to catch the opportunity to use
context-sensitivity for improving the precision.

However, we can easily filter out trivial queries that do not involve any procedure
calls. For instance, when analyzing the following snippet, we could easily check that
the query in function foo has no interprocedural value dependencies and therefore can
be pruned out.

int foo() {
int a[4];
int x = 1;
a[0] = 1; // buffer access (query)

}

Furthermore, we observed that a trivial result for a query often means it is too
difficult even for the abstract domain of the main analysis to handle, regardless of
the degree of context-sensitivity used. Such cases include bitwise operations which
are vastly approximated by the numerical abstract domain of our main analysis, and
external function calls which are difficult to analyze precisely on their own.

Application to other selective analyses. Behind our approach lies a general principle
for developing a static analysis that selectively uses precision-improving techniques,
such as context-sensitivity, relational abstract domains, and flow-sensitivity. The prin-
ciple is to run an impact pre-analysis that finds out when and where the main static
analysis under its best precision setting is likely to have an accurate result, and to
choose appropriate analysis parameters of the main analysis based on the pre-analysis
results.
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For instance, consider the octagon analysis [Miné 2006], which tracks constraints of
form ±x ± y ≤ c (where c ∈ Z ∪ {+∞}) for a pair of variable x and y. Since tracking
constraints of all possible variable pairs is inefficient and often intractable, we want
to select only some of them that might be tracked precisely by the octagon domain and
also helpful to prove the queries of interest. In order to achieve this goal, we design an
impact pre-analysis that aims at finding when and where the original octagon analysis
is likely to infer precise relationships between program variables.

More specifically, this pre-analysis tracks constraints of form ±x± y ≤ a between all
possible pairs of x and y, but it uses a simple domain of only two abstract values > and
F as bound a, instead of all integers and∞ as the octagon analysis does. Here x+y ≤ >
represents all octagon constraints of form x + y ≤ c including the case when c = +∞,
whereas x + y ≤ F just excludes that case. The observation behind the design of the
abstract domain is that the octagon analysis could often prove the safety of a buffer
access when it had inferred a constraint of an integer bound as the invariant. Based
on the results of this pre-analysis, we can estimate the octagonal constraints that help
improve the precision regarding given queries, and guide our selective octagon analysis
to track only these constraints.

In Section 6.1, we describe this selective octagon analysis in details. In section 6.2
we describe another application of our approach to flow-sensitivity.

3. PROGRAM REPRESENTATION
Control Flow Graph. We assume that a program P is represented by a control flow

graph (C,→,F, ι) where C is the finite set of nodes, (→) ⊆ C × C denotes the control
flow relation between nodes, F is the set of procedure ids, and ι ∈ C is the entry node of
the main procedure. The entry node ι does not have predecessors. A node c ∈ C in the
program is one of the five types:

C = Ce (Entry Nodes)
] Cx (Exit Nodes)
] Cc (Call Nodes)
] Cr (Return Nodes)
] Ci (Internal Nodes)

Each procedure f ∈ F has one entry node and one exit node. Given a node c ∈ C, fid(c)
denotes the procedure enclosing the node. Each call-site in the program is represented
by a pair of call and return nodes. Given a return node c ∈ Cr, we write callof(c) for the
corresponding call node. We denote the set of call edges by�:

(�) = {(c1, c2) | c1 → c2 ∧ c1 ∈ Cc ∧ c2 ∈ Ce}

and the set of return edges by 99K:

(99K) = {(c1, c2) | c1 → c2 ∧ c1 ∈ Cx ∧ c2 ∈ Cr}.

We assume for simplicity that there are no indirect function calls such as calls via
function pointers, that is, the call and return edges respect the following conditions:

∀c1, c2, c3 ∈ C.
{

c1 � c2 ∧ c1 � c3 =⇒ c2 = c3
c2 99K c1 ∧ c3 99K c1 =⇒ c2 = c3

Primitive Command. We associate a primitive command with each node c of our
control flow graph, and denote it by cmd(c). The set of possible primitive commands is
specified by the following grammar:

cmd → skip | x := e
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where e is an arithmetic expression:

e→ n | x | e+ e | e− e
We denote the set of all program variables by Var.

For simplicity, we handle parameter passing and return values of procedures via
simple syntactic encoding.2 Recall that we represent a call statement x := fp(e) (where
p is a formal parameter of procedure f ) with call and return nodes. In our program, the
call node has command p := e, so that the actual parameter e is assigned to the formal
parameter p. For return values, we assume that each procedure f has a variable rf
and the return value is assigned to rf : that is, we represent return statement return e
of procedure f by rf := e. The return node has command x := rf , so that the return
value is assigned to the original return variable. We assume that there are no global
variables in the program, all parameters and local variables of procedures are distinct,
and there are no recursive procedures.

4. SELECTIVE CONTEXT-SENSITIVE ANALYSIS WITH PARAMETER K

We consider selective context-sensitive analyses specified by the following data:

(1) A domain S of abstract states. We assume that this domain has a complete lattice
structure:

(S,v,⊥,>,t,u).

(2) An initial abstract state at the entry of the main procedure:
sI ∈ S.

(3) An abstract semantics of every primitive command cmd:
JcmdK : S→ S.

We require that semantic function JcmdK be monotone.
(4) A context selector K that maps procedures to sets of calling contexts (sequences of

call nodes):

K ∈ F→ ℘(C∗c)

For procedure f , the set K(f) specifies calling contexts that the analysis should
differentiate while analyzing the procedure. We sometimes abuse the notation and
denote by K the entire set of calling contexts in K: we write κ ∈ K to denote that
κ ∈

⋃
f∈FK(f).

With the above data, we design a selective context-sensitive analysis as follows.
First, we differentiate nodes with contexts in K, and define a set CK ⊆ C × C∗c of
context-enriched nodes:

CK = {(c, κ) | c ∈ C ∧ κ ∈ K(fid(c))}.
The control flow relation (→) ⊆ C× C is extended to→K on CK :

Definition 4.1 (→K). (→K) ⊆ CK×CK is the context-enriched control flow relation:

(c, κ)→K (c′, κ′) iff{
c→ c′ ∧ κ′ = κ (c′ 6∈ Ce ] Cr)
c→ c′ ∧ κ′ = c ::K κ (c ∈ Cc ∧ c′ ∈ Ce)
c→ c′ ∧ κ = callof(c′) ::K κ′ (c ∈ Cx ∧ c′ ∈ Cr)

2For presentation brevity. Alternatively, we can handle parameter passing and return values directly in the
(abstract) semantics, which our implementation in Section 7 follows.
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where (::K) ∈ Cc × C∗c → C∗c updates contexts according to K:

c ::K κ =

{
c · κ (c · κ ∈ K)
ε otherwise

where ε is the empty call sequence.

In our analysis, ε is used to represent all the other contexts not included in K, and we
assume that K includes ε if it is necessary. For instance, consider a program where f
has three different calling contexts κ1, κ2, and κ3. When the analysis differentiates κ1

only, undistinguished contexts κ2 and κ3 are represented by ε. Thus, K(f) = {κ1, ε}.
Note that our analysis isolates undistinguished contexts from distinguished ones: ε
means only κ2 or κ3, not κ1.

Example 4.2. The analysis is context-insensitive whenK=λf.{ε} and fully context-
sensitive whenK=λf.C∗c . Our selective context-sensitive analysis in Section 2 uses the
following context selector K:

main 7→ {ε}
f 7→ {14, 15}
g 7→ {ε}

multi glob 7→ {10 · 14, 10 · 15, 11}
xmalloc 7→ {4 · 10 · 14, 4 · 10 · 15, 4 · 11, ε}

Procedures f and multi glob do not have ε, as all of their calling contexts are pre-
scribed in K.

Next, we define the abstract domain D of the analysis:

D = (CK → S) (4)

The analysis keeps multiple abstract states at each program node c, one for each con-
text κ ∈ K(fid(c)). The abstract transfer function F of the analysis works on CK , and
it is defined as follows:

F (X)(c, κ) = Jcmd(c)K(
⊔

(c0,κ0)→K(c,κ)

X(c0, κ0)). (5)

The static analysis computes an abstract element X ∈ D that over-approximates all
the concrete states summarized by sI and forms an inductive invariant of the given
program:

sI v X(ι, ε) ∧ ∀(c, κ) ∈ CK . F (X)(c, κ) v X(c, κ) (6)

In general, many X can satisfy the condition in (6). Choosing one among these solu-
tions is up to each static analysis, and depends on its fixpoint algorithm. Some analyses
compute the least X satisfying (6), where abstract elements are ordered pointwise:

X v Y iff ∀(c, κ) ∈ CK . X(c, κ) v Y (c, κ).

Other analyses use a widening operator [Cousot and Cousot 1977; 1992], and com-
pute not necessarily the least, but some solution of (6). We reminder the reader that a
widening operator

`
is a binary function on D:

h
: D× D→ D

such that

(1) X v X
`
Y and Y v X

`
Y for all X,Y ∈ D; and
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(2) for every sequence {Xn} in D, the following widened sequence {Yn} converges after
some finite step:

Y0 = X0, Yn+1 = Yn
h
Xn+1.

These analyses compute the limit of the following converging sequence:

X0 = λ(c, κ). if ((c, κ) = (ι, ε)) then sI else ⊥,
Xn+1 = Xn

`
F (Xn).

Example 4.3. The interval analysis is a standard example that uses a widening
operator. Let I be the domain of intervals defined by

I = {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}

and order elements in this domain as follows:

[l, u] v [l′, u′] iff l′ ≤ l ∧ u ≤ u′.

Using this domain, we specify the rest of the analysis:

(1) The abstract states are⊥ or functions from program variables (Var) to their interval
values (I):

S = {⊥} ∪ (Var→ I)

An abstract state s ∈ S specifies upper and lower bounds for every program vari-
able, and it means concrete states satisfying these constraints. Abstract states are
ordered pointwise, and form a complete lattice:

s v s′ iff (s = ⊥) ∨ (∀x ∈ Var. s(x) v s′(x))

(2) The initial abstract state is:
sI(x) = [−∞,+∞].

(3) The abstract semantics of primitive commands is:
JskipK(s) = s

Jx := eK(s) =

{
s[x 7→ JeK(s)] (s 6= ⊥)
⊥ (s = ⊥)

where JeK is the abstract evaluation of the expression e with interval values: for
s ∈ S with s 6= ⊥,

JnK(s) = [n, n]
JxK(s) = s(x)

Je1 + e2K(s) = Je1K(s) + Je2K(s)
Je1 − e2K(s) = Je1K(s)− Je2K(s).

In the evaluation, we use standard operators for adding and subtracting interval
values, which we recall below:

[a, b] + [c, d] = [a+ c, b+ d],
[a, b]− [c, d] = [a− d, b− c]

(4) The last component of the analysis is a widening operator. It is based on the fol-
lowing operators of type I× I→ I:

[l, u] t [l′, u′] = [min(l, l′),max(u, u′)]
[l, u]

`
I [l′, u′] = [if (l′ < l) then

(if (l′ < 0) then −∞ else 0) else l,
if (u′ > u) then +∞ else u]
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Note that the above widening operator uses 0 as a threshold, which is useful when
used for proving buffer-overrun safety. The analysis carefully chooses a set of nodes
Cw, such as all the loop headers, function entries and exits, and uses the following
widening operator:

(X
`
Y )(c, κ) =

if (X(c, κ) = ⊥ ∨ Y (c, κ) = ⊥ ∨ c 6∈ Cw)
then (X(c, κ) t Y (c, κ))
else (λx.X(c, κ)(x)

`
I Y (c, κ)(x)).

Queries. Queries are triples in Q ⊆ C×S×Var, and they are given as an input to our
static analysis. A query (c, s, x) represents an assertion that every reachable concrete
state at node c is over-approximated by the abstract state s. The last component x
describes that the query is concerned with the value of variable x. For instance, in the
interval analysis, a typical query is

(c, λy. if (y = x) then [0,∞] else >, x)

for some variable x. It asserts that at program node c, the variable x should always
have a non-negative value. Proving the queries or identifying those that are likely to
be violated is the goal of the analysis.

5. IMPACT PRE-ANALYSIS FOR FINDING K

Suppose that we would like to develop a selective context-sensitive analysis in Section
4 for a given program and given queries, using one of the existing abstract domains
specified by the following data:

(S, sI ∈ S, J−K : S→ S),

where S is the domain of abstract states, sI the initial abstract state, and JcmdK : S→ S
the abstract semantics of a primitive command cmd. To achieve our aim, we need to
construct K, a specification on context-sensitivity for the given program and queries.
Once this construction is done, the rest is standard. The analysis can analyze the
program under the partial context-sensitivity, using an induced abstract domain D and
transfer function F : D → D from equation (4) and (5). We assume that the analysis
employs the fixpoint algorithm based on widening operation

`
: D× D→ D.

How could we automatically choose an effective context selector K that balances the
precision and cost of the induced interprocedural analysis? In this section, we give an
answer to this question. In Section 5.1, we present an impact pre-analysis which es-
timates the behavior of the main analysis (S, sI , J−K) under full context-sensitivity. In
Section 5.2, we describe how we could use the results of the pre-analysis for construct-
ing K. Throughout the section, we fix our main analysis to (S, sI , J−K).

5.1. Designing an Impact Pre-Analysis
An impact pre-analysis for context-sensitivity aims at estimating the main analysis
(S, sI , J−K) under full context-sensitivity. It is specified by the following data:

(S], s]I ∈ S], J−K] : S] → S], K∞).

This specification and the way that the data are used in our pre-analysis are fairly
standard. S] and JcmdK] are, respectively, the domain of abstract states and the ab-
stract semantics of cmd used by the pre-analysis, and s]I is an initial state. K∞ = λf.C∗c
is the context selector for full context-sensitivity. The pre-analysis uses the abstract
domain

D] = CK∞ → S]
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and the following transfer function F ] : D] → D] for the given program:

F ](X)(c, κ) = Jcmd(c)K](
⊔

(c0,κ0)→K∞ (c,κ)

X(c0, κ0)).

It computes the least X satisfying

s]I v X(ι, ε) ∧ ∀(c, κ) ∈ CK . F ](X)(c, κ) v X(c, κ) (7)
What is less standard is the soundness and computability conditions for our pre-

analysis, which provide a guideline on the design of the pre-analysis. Let us discuss
these conditions separately.

Soundness condition. Intuitively, our soundness condition says that all the compo-
nents of the pre-analysis have to over-approximate the corresponding ones of the main
analysis.3 This is identical to the standard soundness requirement of a static program
analysis, except that the condition is stated not over the concrete semantics of a given
program, but over the main analysis. Also, the soundness is necessary to establish
later the impact realization property of the designed pre-analysis (PROPOSITION 6.3).

The condition has the following four requirements:

(1) There should be a concretization function γ from S] to ℘(S)

γ : S] → ℘(S).

This function formalizes the fact that an abstract state of the pre-analysis means
a set of abstract states of the main analysis.

(2) The initial abstract state of the pre-analysis has to overapproximate the initial
state of the main analysis, i.e.,

sI ∈ γ(s]I).

(3) The abstract semantics of primitive commands in the pre-analysis should be sound
with respect to that of the main analysis:

∀s ∈ S, s] ∈ S]. s ∈ γ(s]) =⇒ JcmdK(s) ∈ γ(JcmdK](s])).
(4) The join operation of the pre-analysis’s abstract domain over-approximates the

widening operation of the main analysis. The join operation t on D] = CK∞ → S]
is defined as follows:

(X] t Y ])(c, κ) = X](c, κ) t Y ](c, κ).

This join operation should approximate the widening operation of the main analy-
sis: for all X,Y ∈ D and X], Y ] ∈ D],

(X ∈ γ(X]) ∧ Y ∈ γ(Y ])) =⇒ X
`
Y ∈ γ(X] t Y ]).

The purpose of our condition is that the impact pre-analysis over-approximates the
fully context-sensitive main analysis:

LEMMA 5.1. Let M ∈ D be the main analysis result, i.e., a solution of (6) under full
context-sensitivity (K=K∞). Let P ∈ D] be the pre-analysis result, i.e., the least solution
of (7). Then, the pre-analysis result over-approximates the main analysis result:

∀c ∈ C, κ ∈ C∗c . M(c, κ) ∈ γ(P (c, κ)).

PROOF. Immediate from the abstract interpretation framework [Cousot and Cousot
1977; 1992].

3We design a pre-analysis as an over-approximation of the main analysis, because an under-approximating
pre-analysis would be too optimistic in context selection (because its analysis result contains more F than
the over-approximated pre-analysis) and the resulting selective main analysis is hardly cost-effective.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Oh et al.

Computability condition. The next condition is for the computability of our pre-
analysis. The pre-analysis we are designing over-approximates a main analysis of the
best possible precision which is in most cases incomputable or intractable. This com-
putability condition ensures that the pre-analysis, though estimating the most precise
main analysis, remains to be computable. Furthermore, the condition yields a pre-
analysis that can be computed by an efficient algorithm since it requires the analysis
to be of a simple form. The condition consists of two requirements:

(1) The abstract states are ⊥ or functions from program variables to abstract values:
S] = {⊥} ∪ (Var→ V)

where V is a finite complete lattice
(V,vv,⊥v,>v,tv,uv).

We extend this lattice structure point-wise and equip S] with usual lattice opera-
tors. The definition of lattice operators are as follows:

s v s′ iff (s = ⊥) ∨ (∀x. s(x) vv s′(x))
> = λx.>v

⊥ t s′ = s′ t ⊥ = s′

s t s′ = λx. s(x) tv s′(x) (s 6= ⊥, s′ 6= ⊥)
⊥ u s′ = s′ u ⊥ = ⊥
s u s′ = λx. s(x) uv s′(x) (s 6= ⊥, s′ 6= ⊥)

An initial abstract state:

s]I = λx.>v.
(2) The abstract semantics of primitive commands has a simple form involving only

join operation and constant abstract value, which is defined as follows:
JskipK](s) = s

Jx := eK](s) =

{
s[x 7→ JeK](s)] (s 6= ⊥)
⊥ (s = ⊥)

where JeK] has the following form: for every s 6= ⊥,
JeK](s) = s(x1) t . . . t s(xn) t v

for some variables x1, . . . , xn and an abstract value v ∈ V, all of which are fixed for
the given e. We denote these variables and the value by

var(e) = {x1, . . . , xn}, const(e) = v.

The exact choice of x1, . . . , xn and v depends on each analysis.

Example 5.2 (Impact Pre-Analysis for the Interval Analysis). We design a pre-
analysis for our interval analysis in Example 4.3, which satisfies our soundness and
computability conditions. The pre-analysis aims at predicting which variables get as-
sociated with non-negative intervals when the program is analyzed by an interval
analysis with full context-sensitivity K∞.

(1) Let V = {⊥v,F,>v} be a lattice such that ⊥v vv F vv >v. Define a function
γv : {⊥v,F,>v} → ℘(I) as follows:

γv(>v) = I
γv(F) = {[a, b] ∈ I | 0 ≤ a}
γv(⊥v) = ∅

This function determines the meaning of each element in V in terms of a collection
of intervals. The only non-trivial case is F which denotes all non-negative inter-
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vals. We include this case because the main analysis should infer non-negative
intervals on buffer accesses in order to prove buffer-overrun safety.

(2) Abstract states are ⊥ or functions from program variables (Var) to their flow values
(V):

S] = {⊥} ∪ (Var→ V).

The meaning of abstract states in S] is given by a concretization function γ. Let S
be the abstract domain of the interval analysis, and s a non-⊥ element of S].

γ(⊥) = {⊥}
γ(s) = {s ∈ S | s = ⊥ ∨ ∀x ∈ Var. s(x) ∈ γv(s(x))}.

(3) Initial abstract state:
s]I = > = λx.>v.

(4) Abstract semantics of primitive commands:
JskipK](s) = s

Jx := eK](s) =

{
s[x 7→ JeK](s)] (s 6= ⊥)
⊥ (s = ⊥)

where JeK] is defined as follows: for every s 6= ⊥,
JnK](s) = if (n ≥ 0) then F else >v
JxK](s) = s(x)

Je1 + e2K](s) = Je1K](s) tv Je2K](s)
Je1 − e2K](s) = >v

The analysis approximately tracks numbers, but distinguishes the non-negative
cases from general ones: non-negative numbers get abstracted to F by the analy-
sis, but negative numbers are represented by >v. Observe that the + operator is
interpreted as the least upper bound tv, so that e1 + e2 evaluates to F only when
both e1 and e2 evaluates toF. This implements the intuitive fact that the addition
of two non-negative intervals gives another non-negative interval. For expressions
involving subtractions, the analysis simply produces >v. The above pre-analysis
satisfies the soundness and computability conditions of our impact pre-analysis.
That is, JeK] has the form of

JeK(s) = s(x1) tv . . . tv s(xn) tv v
for all expressions. Also, it is easy to check that this abstract semantics of our pre-
analysis is sound with respect to the abstract semantics of the interval analysis in
Example 4.3. Note that the join operation of our pre-analysis over-approximates
the zero-threshold widening operator in Example 4.3.

Running the pre-analysis via reachability-based algorithm. The class of our pre-
analyses enjoys efficient algorithms (e.g., [Reps et al. 1995; Deutsch 1997]) for comput-
ing the least solution X that satisfies (7), even though it is fully context-sensitive. For
our purpose, we provide a variant of the graph reachability-based algorithm in [Reps
et al. 1995]. Next, we go through each step of our algorithm while introducing concepts
necessary to understand it. In the rest of this section, we interchangeably write K for
K∞.

First, our algorithm constructs the value-flow graph of the given program, which is
a finite graph (Θ, ↪→) defined as follows:

Θ = C× Var, (↪→) ⊆ Θ×Θ

Set Θ of vertices consists of pairs of program nodes and variables, and relation (↪→)
describes edges between vertices.
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Definition 5.3 (↪→). The value-flow relation (↪→) ⊆ (C × Var) × (C × Var) links the
vertices in Θ based on how the value of one variable flows to another at each primitive
command:

(c, x) ↪→ (c′, x′) iff

{
c→ c′ ∧ x = x′ (cmd(c′) = skip)
c→ c′ ∧ x = x′ (cmd(c′) = y := e ∧ y 6= x′)
c→ c′ ∧ x ∈ var(e) (cmd(c′) = y := e ∧ y = x′)

We can extend relation ↪→ to its context-enriched version ↪→K as follows:

Definition 5.4 (↪→K). The context-enriched value-flow relation (↪→K) ⊆ (CK×Var)×
(CK × Var) links the vertices in CK × Var according to the specification below:

((c, κ), x) ↪→K ((c′, κ′), x′) iff

{
(c, κ)→K (c′, κ′) ∧ x = x′ (cmd(c′) = skip)
(c, κ)→K (c′, κ′) ∧ x = x′ (y 6= x′)
(c, κ)→K (c′, κ′) ∧ x ∈ var(e) (y = x′)

(where cmd(c′) in the last two cases is y := e)

Second, the algorithm computes the interprocedurally-valid reachability relation
(↪→†K) ⊆ Θ×Θ:

Definition 5.5 (↪→†K). The reachability relation (↪→†K) ⊆ Θ×Θ connects two vertices
when one node can reach the other via an interprocedurally-valid path:

(c, x) ↪→†K (c′, x′) iff ∃κ, κ′. (ι, ε)→∗K (c, κ) ∧ ((c, κ), x) ↪→∗K ((c′, κ′), x′).

We use the tabulation algorithm in [Reps et al. 1995] for computing (↪→†K). While com-
puting (↪→†K), the algorithm also collects the set C of reachable nodes:

C = {c | ∃κ. (ι, ε)→∗K (c, κ)}. (8)

Third, our algorithm computes a set Θv of generators for each abstract value v in V.
Generators for v are vertices in Θ whose commands join v in their abstract semantics:

Θv = {(c, x) | cmd(c) = x := e ∧ const(e) = v}
∪ (if (v = >v) then {(ι, x) | x ∈ Var} else {})

Finally, using (↪→†K) and Θv, the algorithm constructs PAK :

Definition 5.6 (PAK). PAK ∈ C→ S] is defined as follows:

PAK(c) = if (c 6∈ C) then ⊥
else λx.

⊔
{v ∈ V |∃(c0, x0)∈Θv.(c0, x0) ↪→†K (c, x)}.

Then, PAK is the solution of our pre-analysis:

LEMMA 5.7. Let X be the least solution satisfying (7). Then,

PAK(c) =
⊔
κ∈C∗

X(c, κ).

PROOF. See A.2.

5.2. Use of the Pre-Analysis Results
Using the pre-analysis results, we select queries that are likely to benefit from the in-
creased context-sensitivity of the main analysis. Also, we collect calling contexts that
are worth being distinguished during the main analysis. The collected contexts are
used to construct a context selector K (Definition 5.15), which instructs how much
context-sensitivity the main analysis should use for each procedure call. This main
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analysis with K is guaranteed to benefit from the increased context-sensitivity (Propo-
sition 5.17).

Query selection. We first select queries that can benefit from increased context-
sensitivity. Recall that a set of queries Q ⊆ C× S× Var is given, that the analysis’s job
is to prove each (c, s, x) ∈ Q by computing an abstract state s′ at the node c with s′ v s,
and that the query is about the value of the variable x. In order to select queries whose
resolution can benefit from increased context-sensitivity, we run the pre-analysis un-
der full context-sensitivity K∞. Let PAK∞ : C → S] be the result of the pre-analysis.
Using this result, we select queries as follows:

Q]={(c, x) ∈ (C× Var) | ∃s ∈ S.
(c, s, x) ∈ Q ∧ ∀s′ ∈ γ(PAK∞(c)). s t s′ 6= >} (9)

The first conjunct says that (c, x) ∈ Q] comes from some query (c, s, x) ∈ Q, and the
second conjunct expresses that according to the pre-analysis result, the main analysis
does not lose too much information regarding this query. For instance, consider the case
of interval analysis. In this case, we are usually interested in checking an assertion like
1 ≤ x at c, which corresponds to a query (c, s, x) with the abstract state

s = (λz. if (x = z) then [1,∞] else >).

Then, the second conjunct in (9) becomes equivalent to
PAK∞(c)(x) vF.

That is, we select the query only when the pre-analysis estimates that the variable x
will have at least a non-negative interval in the main analysis.

In the rest of this section, we assume for brevity that there is only one selected query
(cq, xq) ∈ Q] in the program.

Building a context selector. Next, we construct a context selector K : F → ℘(C∗c).
K is to answer which calling contexts the main analysis should distinguish in order
to achieve most of the benefits of context sensitivity on the given query (cq, xq). Our
construction considers the following proxy of this goal: which contexts should the pre-
analysis distinguish to achieve the same precision on the selected query (cq, xq) as
in the case of the full context-sensitivity? In this subsection, we will define a context
selector K (Definition 5.15) that answers this question (Proposition 5.17).

We construct K in two steps. Before giving our construction, we remind the reader
that the impact pre-analysis works on the value-flow graph (Θ, ↪→) of the program and
computes the reachability relation (↪→†K∞) ⊆ Θ × Θ over the interprocedurally-valid
paths.

The first step is to build a program slice that includes all the dependencies of the
query (cq, xq). A query (cq, xq) depends on a vertex (c, x) in the value-flow graph if
there exists an interprocedurally-valid path between (c, x) and (cq, xq) on the graph
(i.e., (c, x) ↪→†K∞ (cq, xq)). Tracing the dependency backwards from the query eventually
hits vertices with no predecessors. We call such vertices sources and denote their set
by Φ.

Definition 5.8 (Φ). Sources Φ are vertices in Θ where dependencies begin:
Φ = {(c0, x0) ∈ Θ | ¬(∃(c, x) ∈ Θ. (c, x) ↪→ (c0, x0))}.

The absence of predecessors implies that the abstract semantics at (c0, x0) ∈ Θ assigns
a fixed constant abstract value to x0 without using or joining other abstract values
from vertices in Θ.Among vertices in Φ, we compute the set Φ(cq,xq) of sources on which
the query (cq, xq) depends.
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CFG

1x = 1

2call f
3y = x

4call g 5z = y+1

6z > 0?

7y = 10

8call g

m f g h

Calling
Contexts κ0 2·κ0 {4·2·κ0, 8·κ1} κ1

Context
Selector K = {m 7→ ε, f 7→ {2, ε}, g 7→ {4·2, 8}, h 7→ ε}

Fig. 2: Example context selector. Gray and black nodes in CFG are source and query points, respectively. The superscript
in front of each command denotes the control point.

Definition 5.9 (Φ(cq,xq)). Sources on which the query (cq, xq) depends:

Φ(cq,xq) = {(c0, x0) ∈ Φ | (c0, x0) ↪→†K∞ (cq, xq)}.

Example 5.10. Consider the control flow graph in Figure 2. Node 6 denotes the
query point, i.e., (cq, xq) = (6, z). The gray nodes represent the sources on which the
query depends, i.e., Φ(6,z) = {(1, x), (7, y)}.

For a source (c0, x0) ∈ Φ(cq,xq) and an initial context κ0 such that (ι, ε) →∗K∞ (c0, κ0),
the following interprocedurally-valid path

((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq) (10)

represents a dependency path for the query (cq, xq). We denote the set of all dependency
paths for the query by Paths(cq,xq).

Definition 5.11 (Paths(cq,xq)). The set of all dependency paths for the query (cq, xq)
is defined as follows:

Paths(cq,xq) = {((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq)
| (c0, x0) ∈ Φ(cq,xq) ∧ (ι, ε)→∗K∞ (c0, κ0)}.

Paths(cq,xq) is the program slice we intend to construct in this step.

Example 5.12. In Figure 2, suppose that κ0 and κ1 are the initial contexts of pro-
cedures m and h, respectively. For source (1, x), we find the following dependency path
to the query (6, z):

p1 = ((1, κ0), x) ↪→K∞ ((2, κ0), x) ↪→K∞ ((3, 2 · κ0), y)
↪→K∞((4, 2 · κ0), y) ↪→K∞((5, 4 · 2 · κ0), z) ↪→K∞((6, 4 · 2 · κ0), z)

and, for source (7, y), we find the following path to (6, z):

p2 = ((7, κ1), y) ↪→K∞ ((8, κ1), y) ↪→K∞ ((5, 8 · κ1), z)
↪→K∞ ((6, 8 · κ1), z).

Then, Paths(6,z) = {p1, p2}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Selective Context-Sensitive Analysis Guided by Impact Pre-Analysis A:19

The next step is to compute calling contexts that should be treated precisely. Con-
sider a dependency path from Paths(cq,xq):

((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq) (11)

where κ0, κ1, . . . , κq are the calling contexts appeared in the (fully context-sensitive)
pre-analysis. Instead, we are interested in partial contexts that represent the “differ-
ence” between κi and κ0. Intuitively, if κ0 is a suffix of κi, i.e., κi = κ′i · κ0, the partial
context for κi is defined as κ′i. Formally, we define the partial calling contexts of κi as

κi 	 κ0 = κi − suffix(κi, κ0)

where suffix(κ1, κ2) is the longest common suffix of κ1 and κ2. The definition of suffix is
as follows:

suffix(κ1, κ2) =

{
suffix(κ′1, κ

′
2) · c when κ1 = κ′1 · c ∧ κ2 = κ′2 · c

ε otherwise

For example, when κi is a suffix of κ0, we use ε as the partial context for κi: if κ0 = c2 ·c1
and κi = c1, then κi 	 κ0 = ε. Suppose that κi and κ0 are not a suffix of each other, for
instance κ0 = c2 · c1 and κi = c3 · c1. In this case, κi 	 κ0 = c3.

In summary, for the path in (11), collecting contexts

{κ0 	 κ0, . . . , κq 	 κ0}
give all the necessary partial calling contexts, where each κi	κ0 belongs to the calling
contexts of procedure fid(ci). Thus, we define the context selector for the dependency
path (11) as follows:

Definition 5.13 (Kp, Context Selector for Path p). Let p be a dependency path from a
source (c0, x0) to query (cq, xq):

p = ((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq),

where κ0 is an initial context at c0 such that (ι, ε) →∗K∞ (c0, x0). The context selector
Kp for the path is defined as,

Kp = λf. {κi 	 κ0 | fid(ci) = f ∧ ((ci, κi), ) ∈ p}.

Example 5.14. From the path p1 in Example 5.12, the collection of κi is {κ0, 2 ·κ0, 4 ·
2 · κ0} (see Figure 2). Hence, the collection of κi 	 κ0 is {ε, 2, 4 · 2}, where ε belongs to
procedure m, 2 to f, and 4 · 2 to g. Similar for path p2. Thus, Kp1 and Kp2 are:

Kp1 =

[
m 7→ {ε}
f 7→ {2}
g 7→ {4 · 2}

]
Kp2 =

[
h 7→ {ε}
g 7→ {8}

]
Then, the final context selector K is the union of Kp’s:

Definition 5.15 (K, Context Selector). Let (cq, xq) be a query. The context selector
K ∈ F→ ℘(C∗c) for our selective analysis is:

K(f) = E(f) ∪
⋃
{Kp(f) | p ∈ Paths(cq,xq)} (12)

where E(f) = {ε} if f 6= fid(cq); and otherwise, E(f) = ∅.
Note that K(f) does not include ε when f is the procedure enclosing the query. This
is because we have completely considered the calling contexts that are relevant to
the query, and hence there are no other contexts to merge into ε. Other procedures,
however, may require ε in the selective context-sensitive analysis.
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Example 5.16. The final context selector for the program in Figure 2:

K =

 m 7→ {ε}
f 7→ {2, ε}
g 7→ {4 · 2, 8}
h 7→ {ε}


In practice, building the context selector K can be efficiently implemented. Given

a query (cq, xq), we first identify its source nodes (c0, x0) ∈ Φ(cq,xq) in the value-flow
graph. Then, we explore the all interprocedurally-valid paths from sources (c0, x0) to
(cq, xq) while collecting call sequences along the paths. The collected call sequences are
the partial contexts {κ0	κ0, . . . , κq	κ0}. Then, we build the context selector from this
set. Given that there are no recursive procedures, these steps are computed in finite
time (we can ignore loops inside procedures, as calling contexts are updated at only
procedure boundaries).

Running selective context-sensitive main analysis. Finally, we run the main analysis
with selective context-sensitivity K defined by the result of the impact pre-analysis.
The following proposition states that the pre-analysis-guided context-sensitivity (K)
manages to pay off at the selective main analysis, although the pre-analysis is fully
context-sensitive and the main analysis is not.

PROPOSITION 5.17 (IMPACT REALIZATION). Let PAK∞ ∈ C → S] be the result of
the impact pre-analysis (Definition 5.6). Let q ∈ Q] be a selected query (9). Let K be
the context selector for q (Definition 5.15) defined using the pre-analysis result PAK∞ .
Let MAK ∈ CK → S be the main analysis result with the context selector K. Then, the
selective main analysis is at least as precise as the fully context-sensitive pre-analysis
for the selected query q:

MAK vq PAK∞

where MAK vq PAK∞ iff (q let
= (c, x))

∀κ ∈ K(fid(c)). MAK(κ, c) ∈ γ(>[x 7→ PAK∞(c)(x)]).

PROOF. See A.1.

This impact realization holds thanks to two key properties. First, our selective context-
sensitivity K (Definition 5.15) distinguishes all the calling contexts that matter for the
queries selected by the pre-analysis. Second, the main analysis designed in Section 4
isolates these distinguished contexts from other undistinguished contexts (ε), ensuring
that spurious flows caused by merging contexts never adversely affect the precision of
the selected query.

6. APPLICATION TO OTHER SELECTIVE ANALYSES
A general principle behind our method is that we can selectively improve the precision
of the analysis by using an impact pre-analysis that estimates the main static analysis
of the maximal precision. In this section, we show how we could use the general princi-
ple to develop other selective program analyses. In Section 6.1, we design a a selective
relational analysis with the octagon domain [Miné 2006], and in Section 6.2, we design
a selective flow-sensitive analysis.

6.1. Selective Relational Analysis
Overview. A selective relational analysis aims to reduce the cost of the relational

analysis by applying the relational analysis only when doing so is likely to benefit the
final analysis precision. For instance, consider the following code:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Selective Context-Sensitive Analysis Guided by Impact Pre-Analysis A:21

1 int a = b;
2 int c = input(); // User input
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Query 1
5 assert (i < c); // Query 2
6 }

Suppose that, at the beginning, the value of b is unknown. There are two queries in
the program. At line 4, the query asks whether the value of i is less than the value of
a. The other, at line 5, asks whether the value of i is less than the value of c. Note that
the first query always holds, as a and b are equivalent (by line 1) and i is less than b
according to the loop condition. On the other hand, the second query is not necessarily
true because the value of c comes from the environment and might be greater than the
value of i.

In a non-relational analysis, the first query would not be proved. For instance, sup-
pose that we analyze the example program using the interval domain [Cousot and
Cousot 1977]. The interval analysis is non-relational and cannot infer the equivalence
of a and b. Instead, both a and b have [−∞,+∞] in the analysis and i has [0,+∞] inside
the loop. These analysis results are not strong enough to prove the query.

A fully relational octagon analysis, which tracks contraints of the form ±x ± y ≤ c
(where c ∈ Z ∪ {∞}) between all variables x and y, can prove the first query. The
analysis infers constraints b−a ≤ 0 at line 1 and i−b ≤ −1 at line 3. Then, combining
the two via a closure operation [Miné 2006], the analysis concludes that constraint
i − a ≤ −1 holds at line 4. More specifically, the fully relational octagon analysis
computes the following table (i.e., difference bound matrix [Miné 2006]):

a b c i
a 0 0 ∞ −1
b 0 0 ∞ −1
c ∞ ∞ 0 ∞
i ∞ ∞ ∞ 0

(13)

where the bound c in constraint x− y ≤ c is stored at row y and column x in the table.4
Note that the (a,i) entry of the table stores −1, which means that the analysis proves
i− a ≤ −1 at line 4.

However, this fully relational analysis tracks unnecessary relationships between
variables, which are either irrelevant to the query or not beneficial to the analysis
precision. For instance, it is sufficient to keep only the contraints between a, b, and i
to prove the first query, but the analysis unnecessarily maintains other relationships
such as one between a and c. Besides, tracking a relationship between, for example,
i and c does not change the end result of the analysis because the second query is
impossible to prove.

Our selective octagon analysis tracks octagon constraints only when doing so is
likely to improve the precision that matters for resolving given queries. To achieve
this goal, we use an impact pre-analysis that aims at estimating the behavior of the
octagon analysis under its fully relational setting. More specifically, like the fully rela-
tional octagon analysis, the pre-analysis tracks constraints of the form ±x ± y ≤ a for
all variables x and y but approximately tracks the bound; we use one of two abstract
valuesF and > as bound a, rather than all integers and∞. Here x+ y ≤ > represents
all octagon constraints of the form x + y ≤ c including the case that c = ∞, whereas

4For simplicity, we consider only constraints of the form x − y ≤ c. In fact, the octagon analysis tracks
constraints of both forms x− y ≤ c and x+ y ≤ c and maintains a matrix of size (2× |Var|)2.
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x + y v F means octagon constraints x + y ≤ c with integer constant c. This simple
abstract domain is chosen because constant bound, not∞, proves buffer-overrun prop-
erties. For instance, in our example program, the pre-analysis result at line 4 is given
as follows:

a b c i
a F F > F
b F F > F
c > > F >
i > > > F

The table has the same size as the one in (13), but its entries represent the approx-
imated bounds: abstract value F denotes all integer constants, and > includes ∞ in
addition to all the integer constants.

Next, using the pre-analysis results, we select variables whose relationships help
improve the precision regarding given queries. We first identify queries (in our ex-
ample, the first query) whose values are evaluated toF using the pre-analysis results.
Then, for each of selected queries, we do a dependency analysis to find out the variables
whose relationships should be tracked together for the main analysis to answer query.
For instance, consider that the constraint regarding the first query is i − a v F. Our
dependency analysis figures out that the constraint was derived in the pre-analysis by
combining two constraints i− b vF and b− a vF in its closure operation. Therefore,
the dependency analysis concludes that the main analysis should be able to derive
three relationships i− a vF, i− b vF, and b− a vF to prove the first query. Based
on this conclusion, our selective octagon analysis decides to track the relationships
between variables a, b, and i.

In the rest of this section, we formalize the key aspects of our selective octagon
analysis.

Selective octagon analysis via variable packing. We first specify selective octagon
analyses for the following simple commands:

cmd → x := y + k | x :=?

where k ∈ Z is a positive integer and ? models arbitrary integers. We use Miné’s def-
initions [Miné 2006] of the octagon domain O and abstract semantics JcmdK : O → O
of primitive commands; we consider the positive form x and negative form x̄ for each
variable x and represent an octagon domain element o ∈ O by a 2|Var| × 2|Var| matrix
where each entry oxy ∈ Z ∪ {+∞} stores the upper bound of y − x. The definition of
JcmdK for our commands can be found at [Miné 2006].

With O and JcmdK, we define the domain of packed octagons that assign an octagon
to a subset of variables, which we call pack. An octagon of a pack expresses only the
constraints of the variables in that pack. We call Π ⊆ ℘(Var) of sets of variables packing
configuration, such that

⋃
Π = Var. The packed octagon domain PO(Π) parameterized

by packing configuration Π is then defined as PO(Π) = Π→ O. We extend the abstract
semantics JcmdK : O→ O of command cmd to JcmdKΠ : PO(Π)→ PO(Π) as follows:

JcKΠ(po) = λπ ∈ Π.
Jx := y + kK(po(π)) (c = x := y + k ∧ x ∈ π ∧ y ∈ π)
Jx :=?K(po(π)) (c = x := y + k ∧ x ∈ π ∧ y 6∈ π)
Jx :=?K(po(π)) (c = x :=? ∧ x ∈ π)
po(π) otherwise

The extended abstract semantics is essentially the same except it forgets all the re-
lationships of the assignee x (the second case) when the pack is missing one variable
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involved in the octagonal constraint. The abstract semantics of program in D = C →
PO(Π) is defined as the least fixpoint of abstract transfer function FΠ : D → D, which
is defined as usual.

The selectivity of the analysis is governed by the configuration Π. For instance,
with Π = {{x} | x ∈ Var}, the analysis degenerates to a non-relational analysis. With
Π = {Var}, the analysis becomes a fully relational analysis. Our goal is to find a cost-
effective Π by using an impact pre-analysis.

Impact pre-analysis. Second, we formally define the impact pre-analysis. The mean-
ing of our abstract values (V = {F,>}) is described by γV : V → ℘(Z ∪ {+∞}) such
that

γV(F) = Z
γV(>) = Z ∪ {+∞}

The abstract state O] = {⊥]} ∪ V2|Var|×2|Var| of our pre-analysis is the set of matrices
whose entries are in V. An abstract state o] ∈ O] denotes a set of octagons: we define
γ : O] → ℘(O) as follows:

γ(o]) = {o ∈ O | ∀i, j. oij ∈ γV(o]ij)}

The abstract semantics JcmdK] : O] → O] of each primitive command cmd of the pre-
analysis is defined as an over-approximation of the abstract semantics of the main
analyses: e.g.,

(
Jx :=?K](o])

)
ij

=


F (i = j = x or i = j = x̄)
> (i 6∈ {x, x̄} or j 6∈ {x, x̄})
o]ij otherwise

The abstract domain of the pre-analysis is D] = C → O] and the pre-analysis result
is defined as the least fixpoint of semantic function F ] : D] → D], which is defined as
usual.

Use of pre-analysis results. From the pre-analysis results (lfpF ]), we construct Π as
follows. Assume that a set Q ⊆ C × Var × Var of relational queries is given in the
program. A query (c, x, y) ∈ Q represents a predicate y − x < 0 at program point c and
we say that o ∈ O proves the query when oxy ≤ −1. We first select a set Q] of queries
that are judged promising by the pre-analysis:

Q] = {(c, x, y) ∈ Q | (lfpF ])(c) 6= ⊥] ∧ (lfpF ])(c)xy =F}.

Next, for each selected query (c, x, y) ∈ Q], we compute the pack π(c,x,y) ⊆ Var of nec-
essary variables using dependency analysis, which is simultaneously done with the
pre-analysis as follows: let V\ be V × ℘(Var) and O\ be the set of 2|Var| × 2|Var| matri-
ces over V\. The idea is to over-approximate the involved variables for each octagon
constraint in the second component of V\. The abstract semantics J·K\ : O\ → O\ is the
same as J·K] except that it also maintains the involved variables: e.g.,

(
Jx :=?K\(o\)

)
ij

=


(
F, {i, j}

)
(i = j = x or i = j = x̄)

(>,Var) (i 6∈ {x, x̄} or j 6∈ {x, x̄})
o\ij otherwise

Let F \ : (C → O\) → (C → O\) be the abstract transfer function and lfpF \ be its
least fixpoint. Then, the pack π(c,x,y) is defined as S such that

(
(lfpF \)(c)

)
xy

=
(
F, S

)
.

Finally, we extract the packing configuration Π using π(c,x,y) as follows:

Π = {π(c,x,y)} ∪ {{z} | z ∈ Var \ π(c,x,y)}. (14)
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Selective main octagon analysis. We run the selective octagon analysis with the
packing configuration in (14).

PROPOSITION 6.1 (IMPACT REALIZATION FOR SELECTIVE RELATIONAL ANALYSIS).
Let π(c,x,y) be the pack for query (c, x, y) defined by the result of our impact pre-analysis.
Let Π be the packing configuration for π(c,x,y), which is defined in (14). Let FΠ be the
transfer function of the selective octagon analysis with the Π. Then,(

(lfpFΠ)(c)(π(c,x,y))
)
xy
6= +∞.

6.2. Selective Flow-Sensitive Analysis
Overview. A selective flow-sensitive analysis aims to apply flow-sensitivity only

when it is likely to benefit the final analysis results. This technique is useful when
we need to reduce the analysis cost while maintaining the benefits of flow-sensitivity.
For instance, consider the following code, adapted from barcode-0.96:

1 i = 0;
2 codes[i++] = 1; /* buffer-access 1 */
3 for (s = bc->ascii; ...; s++)
4 *s = ...; /* buffer-access 2 */

Suppose that a (fully) flow-sensitive analysis can prove the buffer-access safety at line
2 but the access at line 4 cannot be proved safe even with flow-sensitivity due to the
analysis’ inherent incompleteness (e.g., bc->ascii is unknown during the analysis). In
this case, we aim to apply flow-sensitivity only to program points (lines) 1 and 2, and
analyze others (lines 3 and 4) flow-insensitively.

Next, we formalize the idea of selective flow-sensitivity and describe how to design
an impact pre-analysis for finding program points that need flow-sensitivity.

A selective flow-sensitive analysis with parameter π. We assume that a program is
represented by a control flow graph (C,→) where C denotes the finite set of nodes and
(→) ⊆ C× C denotes the control flows between nodes. Let ι ∈ C be the initial program
point of the program. We associate a primitive command with each node c ∈ C of our
control flow graph, and denote it by cmd(c). The set of possible primitive commands is
specified by the following grammar:

cmd → skip | x := e

where e is an arithmetic expression:

e → n | x | e+ e | e− e

We denote the set of all program variables by Var.
We define a selective flow-sensitive analysis as a special instance of the trace parti-

tioning [Rival and Mauborgne 2007]. Let ∆ be the set of partitioning indicies and

π : ∆→ ℘(C)

be the partitioning function such that C =
⋃
i∈∆ π(i). Given partitioning index i ∈ ∆,

π(i) denotes the set of program points that are partitioned by index i. The analysis
keeps an abstract state for each partitioning index (rather than for each program
point). Thus, the abstract domain is a map from partitioning indicies to abstract states,
i.e.,

D = ∆→ S
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and the abstract transfer function F : (∆→ S)→ (∆→ S) is defined as follows:

F (X)(i) =
⊔

c∈π(i)

Jcmd(c)K(
⊔
c0→c

⊔
c0∈π(i0)

X(i0)) (15)

Note that the analysis merges the effects of all commands denoted by index i, and π
determines the level of flow-sensitivity. For instance, when ∆ = C and π = λc.{c}, the
analysis becomes the ordinary flow-sensitive analysis, and when ∆ is a singleton set
and π maps the single index to the entire set of program points, the analysis gets in-
stantiated to the conventional flow-insensitive analysis. Our goal is to find a parameter
π that yields an analysis located in a sweet spot between the two extremes.

Impact pre-analysis for finding π. We find such a flow-sensitivity parameter π by
using an impact pre-analysis. This pre-analysis focuses only on estimating the impact
of the flow-sensitivity. To do so, the pre-analysis runs with full flow-sensitivity but with
a simpler abstract domain than that of the main analysis. Let S] be the abstract state
and (J−K] : S] → S]) be the abstract semantics of the pre-analysis, which is connected
with the main analysis by the soundness condition in Section 5.1. In addition, in order
to reuse the efficient reachability analysis algorithm (Section 5.1), we further require
the analysis to satisfy the computability condition in Section 5.1, which is specified as
follows:

(1) The abstract states are ⊥ or functions from program variables to abstract values:
S] = {⊥} ∪ (Var→ V)

where V is a finite complete lattice:
(V,vv,⊥v,>v,tv,uv).

For instance, in experiments, we use the V = {>,F,⊥} domain.
(2) An abstract semantics of primitive commands is defined as follows:

JskipK](s) = s

Jx := eK](s) =

{
s[x 7→ JeK](s)] (s 6= ⊥)
⊥ (s = ⊥)

where JeK] has the following form: for every s 6= ⊥,
JeK](s) = s(x1) t . . . t s(xn) t v

for some variables x1, . . . , xn and an abstract value v ∈ V, all of which are fixed for
the given e. We denote these variables and the value by

var(e) = {x1, . . . , xn}, const(e) = v.

Since the pre-analysis is fully flow-sensitive, the partitioning indicies are program
points: we use the following partitioning indices and function:

∆ = C, π = λc.{c}
Thus, the abstract domain is a map from program points to states:

D] = C→ S]

and the abstract semantic function F ] : D] → D] is defined as follows:

F ](X)(c) = Jcmd(c)K](
⊔
c0→c

X(c0)). (16)

We compute lfpF ] via a simplified version of our reachability algorithm. Unlike the
reachability algorithm in Section 5.1, in this case, we do not need to compute the
interprocedurally-valid reachability but only a plain reachability over the value-flow
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graph (with the assumption that the analysis is context-insensitive). As in the pre-
analysis algorithm of the selective context-sensitivity, we construct value-flow graph
(Θ, ↪→):

Θ = C× Var, (↪→) ⊆ Θ×Θ

where (c, x) ↪→ (c′, x′) iff{
c→ c′ ∧ x = x′ (cmd(c′) = skip)
c→ c′ ∧ x = x′ (cmd(c′) = y := e ∧ y 6= x′)
c→ c′ ∧ x ∈ var(e) (cmd(c′) = y := e ∧ y = x′)

Then we find a set Θv of generators for each abstract value v in V. Generators for v are
vertices in Θ whose commands join v in their abstract semantics:

Θv = {(c, x) | cmd(c) = x := e ∧ const(e) = v}
∪ (if (v = >v) then {(ι, x) | x ∈ Var} else {})

Finally, we compute the pre-analysis results PA ∈ C→ S] as follows:

PA(c) = λx.
⊔
{v ∈ V | ∃(c0, x0) ∈ Θv. (c0, x0) ↪→∗ (c, x)}.

The following lemma shows that PA is indeed a solution of the pre-analysis.

LEMMA 6.2. ∀c ∈ C. PA(c) = (lfpF ])(c).

Use of the pre-analysis results. Now we use the pre-analysis results PA(c) to con-
struct the flow-sensitivity parameter π. We first select queries that can benefit from
increased flow-sensitivity. As in the selective context-sensitivity method, we select
Q] ⊆ C× Var from given queries Q ⊆ C× S× Var:

Q] = {(c, x) ∈ (C× Var) | ∃s ∈ S.
(c, s, x) ∈ Q ∧ ∀s′ ∈ γ(PA(c)). s t s′ 6= >}

For simplicity, in the rest of this section, we assume that there is only one selected
query (cq, xq) ∈ Q].

Next, we construct a partitioning function π : ∆ → ℘(C). Intuitively, π prescribes a
set of control flows that need to be distinguished in order to maintain the precision of
the full flow-sensitivity regarding the selected query (cq, xq).

The first step is to compute a program slice that includes all the dependencies of
the selected query (cq, xq). In this case, the query (cq, xq) depends on a vertex (c, x) if
(cq, xq) is reachable from (c, x) over the value-flow graph, i.e., (c, x) ↪→∗ (cq, xq). Let Φ
be the set of vertices where dependencies begin:

Φ = {(c0, x0) ∈ Θ |6 ∃(c, x) ∈ Θ. (c, x) ↪→ (c0, x0)}

and let S(cq,xq) be the set of vertices on the paths from Φ to (cq, xq):

S(cq,xq) = {c ∈ C | (c0, x0) ↪→∗ (c, x) ↪→∗ (cq, xq) ∧ (c0, x0) ∈ Φ}

Then, we define ∆ = S(cq,xq) ∪ {•} and the partitioning function π as follows:

π(i) =

{
{i} i ∈ S(cq,xq)

C \ S(cq,xq) otherwise (i.e., when i = •) (17)

where • denotes all the other program points not included in S(cq,xq). Intuitively, the
partitioning function says that we flow-sensitively analyze the program points on
which the query depends and apply flow-insensitivity to other program points.
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Selective flow-sensitive main analysis. We run the main analysis (15) with the par-
titioning function π in (17). The following lemma shows that the impact estimation of
the pre-analysis manages to pay off at the selective flow-sensitive main analysis.

PROPOSITION 6.3 (IMPACT REALIZATION FOR SELECTIVE FLOW-SENSITIVITY).
Let MAπ be the results of the main analysis in (15) with π in (17). Let PA be the result

of the pre-analysis in (16). Let (cq, xq) be a query. Then,

MAπ vq PA

where MAπ(cq) vq PA iff (let q = (cq, xq))

MAπ(cq) ∈ γ(>[xq 7→ PA(cq)(xq)]).

7. EXPERIMENTS
We evaluate the effectiveness of our method by experiments with SPARROW, an inter-
val domain–based static analyzer for C programs [Oh et al. ]. We avoid direct com-
parisons with other approaches since, to the best of our knowledge, there has been
no related work directly comparable with our approach. The most similar approach to
ours is the one due to [Guyer and Lin 2003a], but the approach is particularly designed
for a pointer analysis and provides no clue to generalize to other types of analyses we
handle. Instead, we study the effectiveness by the difference in the precision and the
overhead within the same static analyzer.

7.1. Setting
SPARROW is a buffer-overrun analyzer that supports full set of the C language.
The baseline analyzer performs a flow-sensitive and context-insensitive analysis, and
tracks both numeric and pointer values. For numeric values, it uses the interval do-
main by default (alternatively, it can use the octagon domain). In addition to the inter-
val domain, the analysis uses an allocation-site–based heap abstraction for dynamic
memory allocation. The analysis is field-sensitive. Thus, an abstract state of the analy-
sis is a map from abstract locations (program variables, allocation-sites, and structure
fields) to abstract values of intervals and points-to sets. These numeric and pointer
values are analyzed simultaneously in a single fixpoint iteration. The analysis com-
putes an abstract state for each program point. More details on the analysis can be
found in our previous papers [Oh and Yi 2013; Oh et al. 2012].

We have run the analysis for various software packages from the GNU open-source
projects. The analysis is global: the entire program is analyzed starting from the main
procedure. For procedure calls whose bodies are not available in source code, we use
handcrafted function stubs for standard library calls and otherwise we assume that
the procedure calls return arbitrary values and have no side-effects. All experiments
were done on a Linux 2.6 system running on a single core of Intel 3.07GHz box with
24GB of memory.

In experiments, we used the analysis results to prove the safety of buffer accesses
in the program. Given a buffer access x[i] and interval analysis results a ≤ i ≤ b
and c ≤ sizeof(x) ≤ d, where a, b, c, d are constant integers, the buffer access is safe if
0 ≤ a ∧ b < c holds; otherwise, the analysis raises a buffer-overrun alarm.

7.2. Selective Context-Sensitive Analysis
On top of the baseline analyzer, we have implemented the impact pre-analysis in Ex-
ample 5.2 and extended the baseline analysis to be selectively context-sensitive. The
pre-analysis gives a set of call sequences that should be treated context-sensitively.
This information guides the main analysis to perform context-sensitive analysis in a
selective manner. In Section 3, we assumed there are no recursive procedures in the
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Program LOC Proc Context-Insensitive
#alarm time

spell-1.0 2,213 31 58 0.6
bc-1.06 13,093 134 606 14.0
tar-1.17 20,258 222 940 42.1
less-382 23,822 382 654 123.0
sed-4.0.8 26,807 294 1,325 107.5
make-3.76 27,304 191 1,500 84.4
grep-2.5 31,495 153 735 12.1
wget-1.9 35,018 434 1,307 69.0
a2ps-4.14 64,590 980 3,682 118.1
bison-2.5 101,807 1,427 1,894 136.3
Total 346,407 4,248 12,701 707.1

Program Our Selective Context-Sensitive Analysis Alarm Overhead
#alarm pre main total #selected call-sites ; reduction pre main

spell-1.0 30 0.1 0.8 0.9 25 / 124 ( 20.2 %) 3 48.3% 16.7% 33.3%
bc-1.06 483 1.9 14.3 16.2 29 / 777 ( 3.7 %) 2 20.3% 13.6% 2.1%
tar-1.17 799 5.4 41.8 47.2 51 / 1213 ( 4.2 %) 3 15.0% 12.8% −0.7%
less-382 562 3.3 163.1 166.4 51 / 1,522 ( 3.4 %) 4 14.1% 2.7% 32.6%
sed-4.0.8 1,238 7.4 110.2 117.6 25 / 868 ( 2.9 %) 3 6.6% 6.9% 2.5%
make-3.76 1,028 7.1 99.1 106.2 67 / 1,050 ( 6.4 %) 3 31.5% 8.4% 17.4%
grep-2.5 653 2.4 13.5 15.9 33 / 530 ( 6.2 %) 3 11.2% 19.8% 11.6%
wget-1.9 942 12.5 69.6 82.1 79 / 1,973 ( 4.0 %) 5 27.9% 18.1% 0.9%
a2ps-4.14 2,121 29.5 148.2 177.7 237 / 2,450 ( 9.7 %) 9 42.4% 25.0% 25.5%
bison-2.5 1,742 34.6 138.8 173.4 173 / 2,038 ( 8.5 %) 4 8.0% 25.4% 1.8%
Total 9,598 104.2 799.4 903.6 770 / 12,545 ( 6.1 %) 24.4% 14.7% 13.1%

Table I: Performance comparison between context-insensitive analysis and our selective context-
sensitive analysis. LOC reports lines of code before pre-processing. Proc shows the number
of procedures in the programs. #alarm reports the number of buffer-overrun alarms raised by
the analyses. pre reports the time spent for running the pre-analysis (including query selection
and building context selector) and main reports the time spent by the main analysis of our
approach. Each entry a/b (c%) in column #selected call-sites means that, among b call-sites in
the program, a call-sites are selected for context-sensitivity by our pre-analysis and the selection
ratio is c%. ; reports the maximum call-depth prescribed by the pre-analysis. Overhead: pre
shows the pre-analysis overhead and main reports the cost increase in the main analysis due
to increased context-sensitivity, compared to the context-insensitive analysis.

program. In fact, the pre-analysis and main analysis run in the presence of recursion.
We assumed so because we do not increase context-sensitivity for queries involved
in the recursive procedures. In Section 5.2, we considered only one query; in imple-
mentation, the pre-analysis computes a single context selector K that specifies call-
ing contexts for multiple queries. When analyzing a procedure under different calling
contexts, we distinguish allocation sites for each context; that is, an allocation-site
produces different abstract locations under different calling contexts.

Table I presents the performance of our selective context-sensitive analysis and com-
pares it with the context-insensitive analysis. We measured the analysis precision by
the number of buffer accesses (#alarm) that cannot be proven safe by the analysis. In
the programs in Table I, there are a total of 83,776 buffer access expressions in the 10
programs.

Overall, our technique strikes a good balance between analysis precision and cost.
In total, the context-insensitive interval analysis points out 12,701 buffer accesses
as potential buffer-overrun errors. Our technique reduces the number down to 9,598
(24.4% reduction). In doing so, our technique increases the total analysis time from
707.1s to 903.6s (27.8% increase).

We observed that passing numeric values through long call chains is necessary in
the interval analysis of C programs. For instance, in a2ps-4.14, among 1682 call se-
quences prescribed by our pre-analysis, 488 call sequences (29%) have length ≥ 3 and
208 call-sequences have length ≥ 5. Our observation does not contradict the folklore
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that tracking the call depth up to 2 (i.e., 2-callstrings approach) is sufficient for most
applications. This folklore is mostly based on experiences with the data-flow analy-
ses for object-oriented programs, such as flow-insensitive points-to analyses for Java,
which typically use finite (non-numerical) domains and aggressive abstraction strate-
gies. On the other hand, our observation comes from the interval analysis for C pro-
grams, which uses an expressive infinite abstract domain.

About the remaining alarms. Although we have reduced the number of false alarms
by 24%, most of the remaining alarms are still spurious. The remaining alarms arise
from various reasons, e.g., imprecise heap abstraction, string abstraction, handling of
external library functions, widening at loops, etc. Reducing them is another challenge
and beyond the scope of this work. For instance, we observed several cases where
the precision improvement by context-sensitivity was not sufficient to remove buffer-
overrun alarms. For example, in grep-2.5, we observed that some buffer accesses are
of the following pattern:

1 void addlists (char **new) {
2 for (i=0; new[i] != NULL; i++) { ... }
3 }

Our technique analyzed procedure addlists separately for its calling contexts, and
hence it accurately inferred the size of buffer new. In this case, however, the improved
accuracy for new is not sufficient to prove the safety of the underlined buffer access,
since the analysis cannot analyze the loop accurately (variable i has [0,+∞] inside the
loop). In order to prove i < sizeof(new), we need to analyze array elements separately
and accurately

The presence of many false alarms do not always mean that the analysis is practi-
cally useless. In practice, not all of those alarms are given to the end users. The final
alarm reports are given in a way to minimize the alarm investigation burdens. For
instance, we use alarm the clustering [Lee et al. 2012] and statistical ranking tech-
niques [Jung et al. 2005] to reduce the number of final alarms (by 45% via alarm
clustering) and to filter out highly probable false alarms.

Comparison with the k-callstrings approach. According to our experience, the k-
callstrings approach did not scale when it is used with the interval abstract domain
for analyzing C programs. The 2- and 3-callstrings approaches did not stop after 30
minutes for programs over 10KLOC. Even the 1-callstrings approach was slow and
did not scale over 40KLOC. For instance, the 3-callstrings approach succeeded to ana-
lyze spell-1.0 in 11.9s (with 30 alarms reported), it did not stop for bc-1.06. We also
noticed that even for small programs, the 1- and 2-callstrings approaches were not
cost-effective. In spell-1.0, the 1-callstrings approach reported 36 alarms in 2.1s, the
2-callstrings 35 alarms in 7.1s, and the 3-callstrings 30 alarms in 11.9s. On the other
hand, our analysis reports 30 alarms in 0.9s.

7.3. Selective Octagon Analysis
We have implemented our selective relational analysis (Section 6.1) on top of the
octagon-analysis version of our baseline analyzer. We compare the performance of our
selective analysis with an existing octagon analysis based on the syntactic variable
packing [Miné 2006; Oh et al. 2012]. The syntactic packing approach relates variables
together if they are involved in the same syntactic block [Miné 2006]. We limited the
maximum pack size by 10 in the syntactic packing strategy, since otherwise the anal-
ysis did not scale.
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Program LOC #Variable #Query Syntactic Packing Approach
proven time mem pack

calculator-1.0 298 197 10 2 0.3 63 18 (7.3)
spell-1.0 2,213 531 16 1 4.8 109 119 (7.7)
barcode-0.96 4,460 2,002 37 16 11.8 221 276 (8.1)
httptunnel-3.3 6,174 1,908 28 16 26.0 220 454 (7.0)
bc-1.06 13,093 2,194 10 2 247.1 945 606 (7.8)
tar-1.17 20,258 5,332 17 7 1,043.2 1,311 1,259 (7.5)
less-382 23,822 4,482 13 0 3,031.5 1,439 1,017 (6.3)
a2ps-4.14 64,590 16,531 11 0 29,479.3 2,304 2,608 (7.8)
Total 135,008 33,177 142 44 33,840.3 6,611

Program Our Selective Relational Analysis Comparison
proven pre main total mem pack Precision Time

calculator-1.0 10 0.1 0.1 0.2 52 3 ( 3.6) +8 -33.3%
spell-1.0 16 1.7 0.7 2.4 63 6 (11.0) +15 -50.0%
barcode-0.96 37 12.2 18.3 30.5 100 12 (25.0) +21 158.5%
httptunnel-3.3 26 10.8 4.5 15.3 105 8 ( 5.8) +10 -41.2%
bc-1.06 9 82.3 35.0 117.3 212 4 ( 4.0) +7 -52.5%
tar-1.17 17 598.5 63.3 661.8 384 7 ( 3.9) +10 -36.6%
less-382 13 2,253.2 596.2 2,849.4 955 8 ( 6.3) +13 -6.0%
a2ps-4.14 11 2,223.5 518.2 2,741.7 909 6 ( 6.7) +11 -90.7%
Total 139 5,182.3 1,236.3 6,418.6 2,780 +95 -81.0%

Table II: Performance comparison between an octagon analysis with an existing syntactic packing
strategy and our selective relational analysis. #Variable denotes the number of variables (ab-
stract locations) in the program. #Query denotes the number of buffer-overrun queries whose
proofs require relational reasoning. proven reports the number of queries that are proven by
each octagon analysis. mem reports the peak memory consumption in megabytes. Each X (Y) in
column pack represents the number of non-singleton packs (X) and the average size (Y) of the
packs used in each relational analysis. Precision and Time shows additionally proven queries
and time consumption by our selective relational analysis compared to the syntactic packing
approach.

Table II shows our benchmark programs. Most of the programs are open-source GNU
programs. On 15 of those programs, we were able to run our octagon analysis. For these
15 programs, we ran the baseline non-relational analysis, manually inspected alarms
reported by the analysis, and identified a subset of these 15 programs that require a re-
lational analysis to prove the absence of some buffer overrun queries. (Some programs
do not need a relational analysis at all because none of the alarms for them can be
removed just by using a relational abstract domain. [Miné 2006; Farzan and Kincaid
2012]) For these identified programs, we compared the performance of syntactic vari-
able packing with our technique. Regarding queries, we used, as queries, the buffer
overrun expressions that could not be proved safe by our baseline (non-relational)
analysis but can be proved safe by a relational analysis. We identified such expres-
sions manually. Column #Query shows the number of such relational queries that we
consider in our experiments. In the experiments, we manually inlined the functions
that are involved in the proofs of the target queries, so that our selective relational
analysis and the syntactic packing approach are run under context-sensitivity.

The results show that our selective octagon analysis has a competitive precision-cost
balance. Among 142 queries in total, our analysis is able to prove 139 (97.9%) queries
in 1,236.3s. On the other hand, the octagon analysis with syntactic packing proved 44
(32.6%) queries in 33,840.3s; the syntactic packing heuristic often fails to prescribe
variable relationships necessary to prove queries. Our analysis is even faster than the
counterpart in most cases because it selectively turns on relational analysis. In the
experiments, all the queries proved by the syntactic packing method were also proved
by our semantic packing technique.

One thing to note is that running our pre-analysis is feasible in practice even though
it is fully relational. The bottlenecks of a fully relational octagon analysis are the mem-
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Program Flow-Insensitive Selective Flow-Sensitive Flow-Sensitive
time alarm pre main total alarm time alarm

spell-1.0 0.2 37 0.5 0.24 0.8 35 1.3 35
barcode-0.96 0.8 460 3.6 1.04 4.7 434 13.5 434
bc-1.06 1.7 648 43.3 11.63 54.9 616 137.4 614
tar-1.17 2.8 1,042 20.2 15.14 35.3 832 88.8 812
less-382 2.4 727 31.8 45.39 77.2 683 217.1 683
parser 3.4 2,196 23.2 17.13 40.3 2,138 80.8 2,136
sed-4.0.8 5.2 938 36.7 5.88 42.6 842 95.4 842
grep-2.5 1.6 969 8.0 3.03 11.0 914 29.1 914
make-3.76 3.1 2,153 28.0 35.44 63.5 1,438 144.7 1,262
bison-2.5 11.2 1,717 139.7 27.01 166.7 1,445 309.3 1,436
TOTAL 32.3 10,887 335.0 161.93 496.9 9,377 1117.2 9,168

Table III: Experimental results of select flow-sensitive analysis. pre means the time spent during
the impact pre-analysis and main denotes the time for the selective main analysis. All times
are in seconds.

ory costs for representing 2|Var| × 2|Var| matrices and the expensive strong closure op-
eration [Miné 2006] whose time complexity is cubic in the number of variables. Thanks
to the simplicity of the abstract domain (F or >), we can reduce the memory cost using
a sparse representation for the matrices. For the closure operation, we use Dijkstra’s
algorithm and compute the shortest-path closure [Miné 2006] instead of the strong
closure. In our experiments, using the shortest-path closure made no difference in the
pre-analysis precision.

7.4. Selective Flow-Sensitive Analysis
We have implemented the selective flow-sensitive method (Section 6.2) on top of the
interval-domain based SPARROW. For the impact pre-analysis, we used the abstract
domain of {F,>}, where F means the set of non-negative intervals and > means all
intervals. We compared the performance of our selective flow-sensitive analysis with
the fully flow-insensitive and flow-sensitive analyses. Table III shows the results.5

The results show that our selective method is also effective for finding an appropri-
ate level of flow-sensitivity. In total, the completely flow-insensitive analysis reports
10887 alarms while taking 32.3s. The completely flow-sensitive analysis increases the
analysis time by 35 times while reporting 9168 alarms. Our selective flow-sensitive
analysis reduces the analysis time of flow-sensitivity from 1117s to 496s (56% reduc-
tion) and in doing so it reports 209 (2% increase) more alarms.

One might conjecture that randomly selecting flow-sensitivity targets would also
lead to a similar performance. According to our experience, this is definitely not true.
For instance, in our experiments with tar-1.13, a random flow-sensitivity that ran-
domly selects half of the program points reports 1,024 alarms, while our selective flow-
sensitivity reports 832 alarms.

8. RELATED WORK
Context-Sensitive Analysis. Most of the previous callstrings-based context-sensitive

analysis techniques assign contexts to calls in a uniform manner. The k-callstring
approach (or k-CFA) [Sharir and Pnueli 1981; Shivers 1991] and its flexible vari-
ants [Harrison III 1989], k-object sensitivity [Milanova et al. 2002], and type sensi-
tivity [Smaragdakis et al. 2011] are such cases. All these techniques generate calling
contexts according to a single fixed policy and do not explore how to tune their param-
eters (for example, different k values at each call site) for target queries. The hybrid
context-sensitivity [Kastrinis and Smaragdakis 2013], which employs multiple poli-

5Some information in Table III is different from Table I because the experiments in Table III were conducted
using a later version (which were developed from scratch) of SPARROW.
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cies of assigning contexts in a single analysis, still does not tailor those policies to the
program to analyze.

Although the functional approaches to context-sensitivity [Sharir and Pnueli 1981;
Reps et al. 1995; Padhye and Khedker 2013] produce necessary calling-contexts only,
they are not applicable to analyses with infinite domains as ours. Functional ap-
proaches use abstract values as context instead of callstrings, maintaining separate
analysis results of a procedure for each different input abstract state. For instance,
Padhey and Khedker [Padhye and Khedker 2013] present a general framework for
such value-based context-sensitive analyses, which also produces the exact same four
contexts when applied to the example program in Section 2. However, these approaches
are only applicable to analyses with finite abstract domains, and hence cannot be used
in, for instance, interval analysis.

Refinement-based Analysis. While refinement-based analyses [Plevyak and Chien
1994; Guyer and Lin 2003b; Sridharan and Bodı́k 2006] are similar to our approach
(in that they use a “pre-analysis” to adjust the main analysis precision), there is a
fundamental difference in their techniques. Refinement-based approaches (e.g., client-
driven analysis [Guyer and Lin 2003b]) start with an imprecise analysis and refines the
abstraction in response to client queries. On the other hand, our approach starts with
a pre-analysis that estimates the impact of the most precise main analysis. As a result,
our approach provides a precision guarantee, which does not hold in the refinement-
based techniques. Furthermore, the principle behind our approach is general; it is
applicable to a range of static analyses (such as interval and octagon analyses) with
various precision axes (such as context-sensitivity and relational analysis). Existing
refinement-based analyses have been special for pointer analyses [Plevyak and Chien
1994; Guyer and Lin 2003b; Sridharan and Bodı́k 2006].

Unfortunately, it is difficult to directly compare our work with the existing
refinement-based techniques. For instance, one approach most similar to ours is the
client-driven pointer analysis [Guyer and Lin 2003b], where a main analysis with the
most imprecise setting identifies places where higher precision is needed. However,
note that the technique has been developed for a particular class of analyses in mind
(i.e., pointer analyses). It is unclear how to generalize the technique to, for instance,
the kinds of program analyses studied in our paper (i.e., interval analysis and octagon
analysis).

Demand-driven Analysis. Our approach is orthogonal to demand-driven analy-
ses [Heintze and Tardieu 2001; Sridharan et al. 2005; Sridharan and Bodı́k 2006].
While demand-driven analyses aim to reduce analysis costs by computing only the
partial solution necessary to answer given queries, we compute the exhaustive solu-
tion with an abstraction tailored to the queries (our analysis is run once for the entire
set of queries). Both approach can complement each other.

Inference of Analysis Parameters. In a high level, our approach suggests a novel tech-
nique for analysis-parameter inference [Liang et al. 2011; Naik et al. 2012; Zhang et al.
2013; Zhang et al. 2014]. There are many parameters to tune in static analysis, to
improve either precision or scalability. Finding a parameter setting with which the
analysis improves the precision without significant slowdown has been a central prob-
lem in static analysis research. Liang et al. [Liang et al. 2011] use machine learning
to find a minimal abstraction, an abstraction that is minimal yet sufficient to prove
all the queries provable by the most precise abstraction, for given queries. Guided by
the number of queries each analysis run has proven, the machine learning algorithm
infers a minimal abstraction (i.e., the k value for each function in context-sensitivity).
However, they study the minimal abstraction itself and provide no practical solutions

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Selective Context-Sensitive Analysis Guided by Impact Pre-Analysis A:33

for selective context-sensitivity. Zhang et al. [Zhang et al. 2013] present a technique for
finding the optimum abstraction, a cheapest abstraction that proves the query, but it
is applicable only to disjunctive analyses. Naik et al. [Naik et al. 2012] use a dynamic
analysis to select an appropriate parameter for a given query, which is guaranteed to
be a necessary condition to prove the query. Zhang et al. [Zhang et al. 2014] presents a
technique for finding a good program abstraction of program analyses written in Dat-
alog. The proposed technique uses a counterexample-guided abstraction refinement,
where the technique guarantees that a failed run excludes all of the abstractions that
lead to similar failures. Our work provides a new contribution to this line of research,
where we use a static pre-analysis to infer an analysis parameter. Our technique is
also applicable to non-disjunctive analyses and non-datalog-based analyses.

Existing Relational Analyses. Our selective octagon analysis is similar to the exist-
ing octagon analyses (such as [Miné 2006; Oh et al. 2012; Farzan and Kincaid 2012]) in
that they use variable packing and and hence they are partially relational. However,
while we selectively construct variable packs that likely benefit the final analysis pre-
cision, existing analyses construct variable packs based on syntactic heuristics [Miné
2006; Oh et al. 2012] or program dependencies [Farzan and Kincaid 2012].

9. CONCLUSION
9.1. Summary
We proposed a method of designing a selective “X-sensitive” analysis, where the selec-
tion is guided by an impact pre-analysis. We followed this approach, presented three
program analyses that selectively apply precision-improving techniques, and demon-
strated their effectiveness with experiments in a realistic setting. The first was a selec-
tive context-sensitive analysis that receives guidance from an impact pre-analysis. The
experiments with realistic benchmarks showed that the method reduces the number
of false alarms of the context-insensitive interval analysis by 24.4%, while increasing
the analysis cost by 27.8%. The second example was a selective relational analysis
with octagons using the same idea of impact pre-analysis. The experiments showed
that our selective octagon analysis proves 95 more queries than the existing one based
on the syntactic variable packing does, and reduces the analysis cost by 81%. The
last example was a selective flow-sensitive analysis with intervals, where the results
showed that our method reduces the cost of the flow-sensitive analysis by 56%, while
reporting 2% more false alarms. We believe that our approach can be used for devel-
oping other selective analyses as well, e.g., selective path-sensitive analysis, selective
loop-unrolling, etc.

9.2. Open Issues
(1) Application to other types of client analyses: In this paper, we have demonstrated

that our technique is effective for context-sensitivity, flow-sensitivity, and rela-
tional analysis with a buffer-overrun client analysis. It remains an open question
whether our technique can be effectively applicable to other types of client analyses
(e.g., resource leaks, race detection, etc) or not.

(2) Performance improvement of selective flow-sensitivity: Although our selective flow-
sensitive analysis reduced the analysis time of full flow-sensitivity by 56%, the
current technique for flow-sensitivity requires relatively high costs. Developing a
new technique for achieving a better cost/accuracy balance would be an interesting
future work. For example, we could design a new impact pre-analysis domain that
shows better performance than our simple >−F domain.

(3) Combining “sensitivities”: Although we presented three selective program analyses
separately, we do not address the problem of combining those analyses. How could
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we design a pre-analysis that estimates context-sensitivity, flow-sensitivity, and
relational constraints worth analyzing for at the same time? Naively designing an
impact pre-analysis that is maximally precise in all three precision axes would
yield an intractable one. We think that it is an interesting open problem to design
an effective pre-analysis for such a combined analysis.
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A. PROOFS
In this appendix, we prove the impact guarantee (Proposition 5.17) of our selective
context-sensitive analysis as well as the correctness of our reachability-based pre-
analysis algorithm (Lemma 5.7).

Remark A.1. In the rest of this appendix, we generalize the notion of the impact
pre-analysis, and write PAK : C→ S] for the solution of the pre-analysis under context-
sensitivity K. In the body of this paper, we have discussed our pre-analysis and its
reachability-based algorithm only under full context-sensitivity (K = K∞). However,
the correctness of our pre-analysis (Lemma 5.7) holds with arbitrary context selector
K, as its proof does not assume a particular instance of K (we prove this generalized
lemma in A.2). This implies that, regardless of the underlying context-sensitivity, we
can compute the least solution of the pre-analysis (7) via our reachability algorithm.

A.1. Proof of Proposition 5.17
PROOF. To show:

∀κ ∈ K(fid(c)). MAK(κ, c) ∈ γ(>[x 7→ PAK∞(c)(x)])
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It is proved by Lemma A.2 and A.6:

γ(>[x 7→ PAK∞(c)(x)])
= γ(>[x 7→ PAK(c)(x)]) (Lemma A.2)
⊇ γ(PAK(c)) (Soundness of >)
3 MAK(κ, c) (Lemma A.6)

What is non-trivial is the first equality (Lemma A.2), which asserts that the result of
the pre-analysis under full context-sensitivity coincides with that of the pre-analysis
under our selective context-sensitivity K (Definition 5.15), as far as the selected query
(c, x) is concerned.

LEMMA A.2 (PRE-ANALYSIS COINCIDENCE). Let (cq, xq) be a query. Let PAK∞ be
the pre-analysis result with full context-sensitivity. Let K be the selective context-
sensitivity for query (cq, xq) defined using PAK∞ (Definition 5.15). Let PAK be the result
of the pre-analysis under the selective context-sensitivity K. Then, PAK∞(cq) = PAK(cq) =
⊥ or

PAK∞(cq)(xq) = PAK(cq)(xq).

PROOF. It is sufficient to show that, in the value-flow graph, the query (cq, xq) is
reachable from a source (c0, x0) under the full context-sensitivity if and only if (cq, xq)
is reachable from (c0, x0) under the selective context-sensitivity K:

∀(c0, x0) ∈ Φ.

(c0, x0) ↪→†K∞ (cq, xq)⇐⇒ (c0, x0) ↪→†K (cq, xq).

— (=⇒) By Lemma A.3.
— (⇐=) When (c0, x0) ∈ Φ(cq,xq), by the definition of Φ(cq,xq). When (c0, x0) 6∈ Φ(cq,xq), by

Lemma A.5.

We prove this lemma in two steps. We first show that for every (c, x) ∈ Φ(cq,xq), we
have (c, x) ↪→†K (cq, xq) (Lemma A.3). Then, we prove that there is no (c′, x′) ∈ Φ\Φ(cq,xq)

such that (c′, x′) ↪→†K (cq, xq) (Lemma A.5). Comprising these two lemmas, we can prove
Lemma A.2.

The following lemma shows that, for every K∞-valid value-flow path from sources
to the query, we can always find the corresponding K-valid value-flow path.

LEMMA A.3. Suppose (c0, x0) ∈ Φ(cq,xq) and consider ci, κi, xi such that

(ι, ε)→∗K∞ (c0, κ0) ∧
((c0, κ0), x0) ↪→K∞ ((c1, κ1), x1) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq).

Then, we have

((c0, κ
′
0), x0) ↪→K ((c1, κ

′
1), x1) ↪→K · · · ↪→K ((cq, κ

′
q), xq).

where κ′i = κi 	 κ0.

Before proving this lemma, we assume that the given program is well-formed in the
following sense.

Definition A.4 (Well-formed Programs). We say a program is well-formed with re-
spect to a query (cq, xq) iff for every source (c0, x0) ∈ Φ(cq,xq) and its valid value-flow
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path
((c0, κ0), x0) ↪→K∞ · · · ((ci, κi), xi) · · · ↪→K∞ ((cq, κq), xq)

the initial context κ0 does not include any intermediate call site ci, i.e., ci 6∈ κ0.

Intuitively, the above condition excludes dependency paths generated by (recursive)
cycles in the program.

Now we prove the lemma:

PROOF. By the definition of K,
∀i. κ′i = κi 	 κ0 ∈ K.

We show that
∀0 ≤ i < n.
((ci, κi), xi) ↪→K∞ ((ci+1, κi+1), xi+1)
=⇒ ((ci, κ

′
i), xi) ↪→K ((ci+1, κ

′
i+1), xi+1)

where cn = cq, κn = κq, and xn = xq. This simply amounts to showing the following:

∀0 ≤ i < n.
((ci, κi)→K∞ (ci+1, κi+1)) =⇒ ((ci, κ

′
i)→K (ci+1, κ

′
i+1)).

(1) ci 6∈ Cc ] Cx:
By the definition of→K∞ ,

κi = κi+1 κi 	 κ0 = κi+1 	 κ0.

By the definition of→K,
(ci, κi 	 κ0)→K (ci+1, κi+1 	 κ0).

(2) ci ∈ Cc:
By the definition of→K∞ ,

κi+1 = ci · κi κi+1 	 κ0 = (ci · κi)	 κ0.

By the definition of K,
(ci · κi)	 κ0 ∈ K.

By the Definition A.4,
(ci · κi)	 κ0 6= ε

and hence
(ci · κi)	 κ0 = ci · (κi 	 κ0) ∈ K.

Therefore, by the definition of ::K and→K, we have
(ci, κi 	 κ0)→K (ci+1, ci ::K (κi 	 κ0)).

(3) ci ∈ Cx:
By the definition of→K∞ ,

κi = callof(ci+1) · κi+1

and hence
κi 	 κ0 = (callof(ci+1) · κi+1)	 κ0.

Now we split into two cases.
(a) When (callof(ci+1) · κi+1)	 κ0 6= ε,

we have
κ′i = (callof(ci+1) · κi+1)	 κ0

= callof(ci+1) · (κi+1 	 κ0)
= callof(ci+1) · κ′i+1

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 Oh et al.

From the definition of K, we have κ′i, κ′i+1 ∈ K. Therefore, by the definition of
::K, we have

κ′i = callof(ci+1) ::K κ
′
i+1.

By the definition of→K,
(ci, κ

′
i)→K (ci+1, κ

′
i+1).

(b) When (callof(ci+1) · κi+1)	 κ0 = ε,
we have

κi 	 κ0 = κi+1 	 κ0 = ε

which means that κ′i = κ′i+1 = ε. Also, note that we have
callof(ci+1) ∈ κ0 (18)

from (callof(ci+1) · κi+1) 	 κ0 = ε. If we assume that callof(ci+1) · κ′i+1 6∈ K, we
can conclude that

(ci, κ
′
i)→K (ci+1, κ

′
i+1).

Now we prove that the assumption is actually true:
callof(ci+1) · κ′i+1 = callof(ci+1) 6∈ K.

Suppose callof(ci+1) ∈ K. Then, there should exist cj = callof(ci+1) ∈ Cc such
that

((c0, κ0), x0) ↪→∗K∞ ((cj , κj), xj) ↪→∗K∞ ((cn, κn), xn)

and

(cj · κj)	 κ0 = cj ∈ K.

By the Definition A.4, cj = callof(ci+1) 6∈ κ0, which contradicts (18).

The following lemma formalizes the fact that our selective context-sensitive analysis
designed in Section 4 isolates undistinguished contexts from distinguished contexts: if
a source does not reach the query in the fully context-sensitive pre-analysis, then the
source does not reach the query in the selective context-sensitive pre-analysis as well.

LEMMA A.5 (ISOLATION). For all (c0, x0) ∈ Φ \ Φ(cq,xq),

(c0, x0) 6↪→†K (cq, xq).

PROOF. Suppose we have (c0, x0) ∈ Φ \ Φ(cq,xq) such that

(c0, x0) ↪→†K (cq, xq).

Then, by the definition of ↪→†K, there exists a ↪→K-path

((c0, κ0), x0) ↪→∗K ((cq, κq), xq)

for some κ0 and κq, which means that we have a→K-path

(c0, κ0)→K · · · →K (cq, κq). (19)

Because κq ∈ K(fid(cq)), by the definition of K we have a ↪→K∞ -path from some source
(cs, xs) ∈ Φ(cq,xq)

((cs, κs), xs) ↪→K∞ · · · ↪→K∞ ((cq, κ
′
q), xq),
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where κq = κ′q 	 κs. Then, by Lemma A.3, we have a ↪→K-path

((cs, ε), xs)→K · · · ↪→K ((cq, κq), xq) (20)

from which we can derive a→K-path

(cs, ε)→K · · · →K (cq, κq). (21)

This path should be distinct from the path (19). Let (ci, κi) be the farthest point from
the query that (19) and (21) agree. We further assume that we have chosen the path
(20) such that among all the→K-paths from (cs, ε) to (cq, κq), (21) has the longest com-
mon suffix with (19). Let (ci−1, κi−1) and (c′i−1, κ

′
i−1) be the first diverging point from

the query such that

(c0, κ0)→K · · · →K (ci−1, κi−1)

→K (ci, κi)→K · · · (cq, κq) (22)

and

(cs, ε)→K · · · →K (c′′i−1, κ
′′
i−1)

→K (ci, κi)→K · · · (cq, κq) (23)

where (ci−1, κi−1) 6= (c′′i−1, κ
′′
i−1). Note that (19) and (21) agree each other at least at

the query point. We now show that this is not possible.

(1) When ci 6∈ Ce ] Cr:
By the definition of→K , we have

κi−1 = κi = κ′′i−1.

Thus, we should have

ci−1 → ci ∧ c′′i−1 → ci

where ci−1 6= c′i−1, which basically means that ci is a join point and ci−1 and c′′i−1
exercise different branches. However, because we have considered all possible valid
paths from sources in Φ(cq,xq) to (cq, xq), we always find another path

(cs, ε)→K · · · →K (ci−1, κ
′′
i−1)

→K (ci, κi)→K · · · (cq, κq)
whenever we have path (23). Therefore, (ci, κi) cannot be the farthest point.

(2) When ci ∈ Ce:
By the definition of→K,

ci−1 ::K κi−1 = κi = c′′i−1 ::K κ
′′
i−1.

It should be either κi = ε and ci−1 · κi−1, c
′′
i−1 · κ′′i−1 6∈ K, or κi 6= ε and (ci−1, κi−1) =

(c′′i−1, κ
′′
i−1). From (21) and the definition of K, we have

κi = κ′i 	 κs = (c′′i−1 · κ′i−1)	 κs
for some κ′i and κ′i−1 such that

(cs, κs)→ · · · → (c′′i−1, κ
′
i−1)→ (ci, κ

′
i)→ (cq, κ

′
q).

From the Definition A.4, we have
(c′′i−1 · κ′i−1)	 κs 6= ε.

We can deduce from this (ci−1, κi−1) = (c′′i−1, κ
′′
i−1). Therefore, (ci, κi) cannot be the

farthest point.
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(3) When ci ∈ Cr:
By the definition of→K,

κi−1 = callof(ci) ::K κi = κ′′i−1.

Also, by the definition of return edge 99K, we can deduce ci−1 = c′′i−1 from ci−1 99K ci
and c′′i−1 99K ci. Therefore, (ci, κi) cannot be the farthest point.

The following lemma shows that our pre-analysis algorithm correctly estimates the
behavior of the main analysis if they use the same context selector.

LEMMA A.6. Let K be an arbitrary context selector. Let MAK ∈ D be the main
analysis result, i.e., a solution of (6), under the K. Let PAK ∈ C→ S] be the result of the
reachability-based algorithm (Definition 5.6) under the K. Then,

∀c ∈ C, κ ∈ C∗c . MAK(c, κ) ∈ γ(PAK(c)).

PROOF. This lemma is proved by Lemma 5.1 and Lemma 5.7, where the proof of
Lemma 5.1 is immediate from the abstract interpretation framework [Cousot and
Cousot 1977; 1992] and we omit the proof. We prove Lemma 5.7 in A.2.

A.2. Proof of Lemma 5.7
Let PAK be the result of our pre-analysis under context-sensitivity K. We show that
PAK is equivalent to the least such X of (7) when the underlying context selector is K.

To show the equivalence, we first define a new graph and use it to construct an
element X ∈ CK → S] based on the reachability over this graph. Then, we prove that
X is the least solution of (7) (Lemmas A.7 and A.8) and PAK is equivalent to X (Lemma
A.9).

In the below, we spell out the details of constructing X :

(1) We define a context-enriched value-flow graph (Ω, ↪→K) with the node set Ω = CK×
Var and the edge set (↪→K) ⊆ Ω× Ω in Definition 5.4.

(2) Let V be the set of (c, κ)’s reachable from (ι, ε):
V = {(c, κ) | (ι, ε)→∗K (c, κ)}

(3) We define a set Ωv of generators for each abstract value v ∈ V:
Ωv = (if (v = >v) then {((ι, ε), x) | x ∈ Var} else {})

∪ {((c, κ), x) | cmd(c) = x := e ∧ const(e) = v}
(4) Finally, using what we have defined so far, we construct X ∈ D] = CK → S]:

X (c, κ) = if ((c, κ) 6∈ V ) then ⊥
else λx.

⊔
{v ∈ V | ∃((c0, κ0), x0) ∈ Ωv.

(c0, κ0) ∈ V ∧
((c0, κ0), x0) ↪→∗K ((c, κ), x)}

LEMMA A.7. The X is a solution of (7). That is,

s]I v X (ι, ε) ∧ F ](X ) v X .
PROOF. The first condition holds because, for all x, ((ι, ε), x) belongs to Ω>v

and
(ι, ε) ∈ V . Hence X (ι, ε) = (λx.>v) = >.

Next we show that
∀(c, κ) ∈ CK . F ](X )(c, κ) v X (c, κ).

Pick (c, κ) ∈ CK . Suppose that
(c, κ) 6∈ V.
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Then, X (c, κ) = ⊥ by the definition of X . Also, for every (c0, κ0) ∈ CK , if (c0, κ0) →K

(c, κ), then (c0, κ0) 6∈ V , which implies that

X (c0, κ0) = ⊥.

Using these observations, we derive the desired relationship as follows:

F ](X )(c, κ) = Jcmd(c)K(
⊔
{X (c0, κ0) | (c0, κ0)→K (ι, κ)})

= Jcmd(c)K(⊥)

= ⊥
= X (ι, κ).

The third equality holds because JcmdK(⊥) = ⊥ for every cmd.
Let us now consider the case that

(c, κ) ∈ V.

In this case,

X (c, κ) 6= ⊥.
If F ](X )(c, κ) = ⊥, the desired relationship follows immediately from the fact that ⊥ is
the least abstract state. Suppose

F ](X )(c, κ) 6= ⊥.

We need to show that

∀x ∈ Var. F ](X )(c, κ)(x) v X (c, κ)(x).

Pick x ∈ Var. Let v = X (c, κ)(x). Also, define w to be const(e) if cmd(c) is a command of
the form x := e for some expression e; otherwise, let w = ⊥v. By the definition of X ,

∀v′. ∀((c0, κ0), x0) ∈ Ωv′ .
((c0, κ0) ∈ V ∧ ((c0, κ0), x0) ↪→∗K ((c, κ), x))

=⇒ v′ v v.

This implies two important facts. First,

w v v (24)

because w = ⊥v, or ((c, κ), x) ∈ Ωw and (c, κ) ∈ V . Second,

∀((c0, κ0), x0).
((c0, κ0) ∈ V ∧ ((c0, κ0), x0) ↪→K ((c, κ), x))

=⇒ X (c0, κ0)(x0) v v.
(25)

Meanwhile, by the definitions of F ], ↪→K , and the abstract semantics of primitive com-
mands,

F ](X )(c, κ)(x) =
w t

⊔
{X (c0, κ0)(x0) | (c0, κ0) ∈ V

∧ ((c0, κ0), x0) ↪→K ((c, κ), x)}.

Hence, from the two facts in (24) and (25) follows that

F ](X )(c, κ)(x) v X (c, κ)(x)

as desired.
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LEMMA A.8. The X is a lower bound for every solution of (7). That is, for every
X ∈ D,

(s]I v X(ι, ε) ∧ F ](X) v X) =⇒ X v X.
PROOF. Consider X ∈ D such that

s]I v X(ι, ε) ∧ F ](X) v X.
We have to show that

∀(c, κ) ∈ CK . X (c, κ) v X(c, κ). (26)

First, we show that

∀(c, κ) ∈ V. X(c, κ) 6= ⊥. (27)

Pick (c, κ) ∈ V . By the definition of V ,

(ι, ε)→n
K (c, κ).

for some n ≥ 0. Our proof is by induction on n.

— Base case: n = 0 in this case. Hence, (ι, ε) = (c, κ). Since s]I v X(ι, ε) by assumption,

X(ι, ε) = > 6= ⊥,
as desired.

— Inductive case: n > 0 in this case. Hence, there exists (c0, κ0) such that

(ι, ε)→n−1
K (c0, κ0)→K (c, κ).

This implies that (c0, κ0) ∈ V , so by the induction hypothesis,

X(c0, κ0) 6= ⊥.
Let s0 = X(c0, κ0). Since F ](X) v X and (c0, κ0)→K (c, κ),

Jcmd(c)K(s0)

v Jcmd(c)K(
⊔
{X(c1, κ1) | (c1, κ1)→K (c, κ)})

= F ](X)(c, κ)

v X(c, κ).

But Jcmd(c)K(s′) = ⊥ holds only if s′ = ⊥. Thus, X(c, κ) 6= ⊥, as desired.

Next, using what we have just proved (i.e., (27)), we prove (26). Pick (c, κ) ∈ CK .
If (c, κ) 6∈ V , then X (c, κ) = ⊥, so the desired inequality above follows immediately.
Otherwise,

X (c, κ) 6= ⊥ ∧ X(c, κ) 6= ⊥,
where the first disequality comes from the definition of X and the second from (27).
Now pick x ∈ Var. Our proof obligation is now reduced to showing

X (c, κ)(x) v X(c, κ)(x).

This inequality is immediate if X (c, κ)(x) = ⊥v. Suppose that

X (c, κ)(x) 6= ⊥v.
Let v = X (c, κ)(x). Since (c, κ) ∈ V and the domain of abstract values V is totally
ordered, there exist

((c0, κ0), x0), . . . , ((cn, κn), xn)
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such that
((c0, κ0), x0) ∈ Ωv ∧ (c0, κ0) ∈ V
∧ (∀0 ≤ i < n. ((ci, κi), xi) ↪→K ((ci+1, κi+1), xi+1))
∧ ((cn, κn), xn) = ((c, κ), x).

(28)

Note that every (ci, κi) is in V . So, by (27),

∀0 ≤ i ≤ n.X(ci, κi) 6= ⊥. (29)

We will show that
v v X(c0, κ0)(x0)
∧ (∀0 ≤ i < n. X(ci, κi)(xi) v X(ci+1, κi+1)(xi+1)).

(30)

Note that this gives the desired relationship v v X(c, κ)(x) because of the transitivity
of v.

The key to show the first conjunct in (30) is to notice that

((c0, κ0) = (ι, ε) ∧ v = >v) ∨
(∃e. cmd(c0) = (x0 := e) ∧ const(e) = v).

If the first disjunct holds, we can use our assumption that

s]I v X(ι, ε)

and derive that

v = >v = s]I(x0) v X(c0, κ0)(x0).

Assume that the disjunct holds. Since X(c0, κ0) 6= ⊥, (c0, κ0) = (ι, ε) or there exists
some (c′0, κ

′
0) such that

(c′0, κ
′
0)→K (c0, κ0) ∧ X(c′0, κ

′
0) 6= ⊥.

Since s]I v X(ι, ε) and F ](X) v X, in both cases, we have that

v v X(c0, κ0)(x0).

We now move on to the second conjunct of (30). In this case, we use a general fact
that if

((c′, κ′), x′) ↪→K ((c′′, κ′′), x′′) ∧ X(c′, κ′) 6= ⊥, (31)

then

F ](X)(c′′, κ′′) 6= ⊥ ∧ X(c′, κ′)(x′) v F ](X)(c′′, κ′′)(x′′).

Since F ](X) v X, the second conjunct above implies that

X(c′, κ′)(x′) v X(c′′, κ′′)(x′′).

Hence, the second conjunct of (30) follows if we discharge the condition (31) for consec-
utive elements in the sequence

((c0, κ0), x0), . . . , ((cn, κn), xn).

This condition holds because of (28) and (29).

LEMMA A.9. For every c ∈ C,

PAK(c) =
⊔
κ∈C∗c

X (c, κ).
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PROOF. Pick c ∈ C. Recall the definition of the set of reachable nodes C in (8):

C = {c | ∃κ. (ι, ε)→∗K (c, κ)}.
If c 6∈ C, then

∀κ ∈ C∗c . (c, κ) 6∈ V.
Hence, in this case, ⊔

κ∈C∗c

X (c, κ) = ⊥.

But PAK(c) is also ⊥ by the definition of PAK .
Suppose that

c ∈ C.
Let K0 = {κ | (c, κ) ∈ V }. Pick x ∈ Var. We will show

PAK(c)(x) =
⊔
κ∈K0

X (c, κ)(x). (32)

The left hand side of this equation is the join of the set

VL = {v ∈ V | ∃(c0, x0) ∈ Θv. (c0, x0) ↪→†K (c, x)}. (33)

The right hand side of the equation in (32) is the join of the set

VR = {v ∈ V | ∃κ ∈ K0.∃((c0, κ0), x0) ∈ Ωv.
(c0, κ0) ∈ V ∧
((c0, κ0), x0) ↪→∗K ((c, κ), x)}.

(34)

It suffices to prove that VL = VR. By the definitions of Ωv and Θv,

(c0, x0) ∈ Θv ⇐⇒ ((c0, κ0), x0) ∈ Ωv.

Hence,

VR = {v ∈ V | ∃(c0, x0) ∈ Θv. ∃κ0. ∃κ ∈ K0.
(c0, κ0) ∈ V ∧
((c0, κ0), x0) ↪→∗K ((c, κ), x)}.

Also, by the definitions of V , K0 and (↪→†K),

(c0, x0) ↪→†K (c, x)

if and only if

∃κ0. ∃κ ∈ K0. (c0, κ0) ∈ V ∧ ((c0, κ0), x0) ↪→∗K ((c, κ), x).

Thus,

VR = {v ∈ V | ∃(c0, x0) ∈ Θv. (c0, x0) ↪→†K (c, x)}.
We have just shown that VR = VL, as desired.
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